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1

CHAPTER 1:
INTRODUCTION

Volume representation and modeling of heterogeneous objects acquired from real-world are

very challenging research tasks and have many potential applications, e.g., volume reconstruc-

tion, volume simulation and volume registration. The fundamental objectives are to unambigu-

ously model high-dimensional heterogeneous objects, accurately and effectively simulate their

behaviors, and rigorously analyze their geometry and physical natures. With ever-improved

computing power and more state-of-the-art data acquisition technologies, volume representa-

tion and modeling become increasingly important in many research and academic realms since

they play the role of foundation for any other further processes, such as analysis, visualization,

and simulation, just to name a few.

1.1 Motivation
Researchers and professionals dedicated to those volume representation and modeling re-

lated domains are usually confronted with two inevitable difficulties.

The first difficulty is, it is usually difficult to choose one appropriate and efficient volume

representation approach. The representations prevalently used nowadays are oftentimes dis-

crete in nature, e.g., voxel-based regular grids and unstructured point samples [56, 57]. Geom-

etry of an underlying volume is implicitly defined in the scalar field. Historically, volumetric

primitives have been based on uniform or rectilinear grid, where the data is often regularly

spaced along grid lines. In the past few years, an unstructured volume representation has

started to emerge as a viable modeling tool, where a tetrahedral mesh is exploited to dictate

the domain of a volume [9, 97, 8, 74]. This type of representation is expected to be more

and more popular as the irregular, adaptive 3D scanning technologies becomes commonplace.

However, from a pure visualizations point of view, tetrahedra are mainly exploited as render-

ing primitives, i.e., they serve as a good discrete representation for visualization. This kind of

tetrahedral mesh representation is onlyC0 continuous. It is less suitable for modeling contin-
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uously varying material attributes without resorting to approximation. To satisfy the modeling

requirement of high-order continuity, volumetric modeling based on splines such as B-splines

or NURBS [67, 27, 78, 41] appears to be more appropriate. Nonetheless, modeling with B-

splines or NURBS has severe shortcomings. Its modeling scope is extremely constrained in

term of geometric, topological, and attribute aspects. First, B-spline and NURBS are defined

over a regular, tensor-product domain. A single B-spline or NURBS can not represent volumes

of arbitrary topology without patching or trimming operations. Furthermore, patching multiple

B-splines or NURBS to form arbitrary topology is not easy to control at all. Second, tensor-

product splines are essentially smooth everywhere. It is difficult to model high-frequency fea-

tures. Third, when refining a region of interest in a tensor-product spline patch, it will introduce

too many extra degrees of freedom in other less-interesting regions nearby in order to retain its

regular structure. Attractive properties such as local adaptivity and multiresolution are rather

difficult to achieve. In a nutshell, researchers usually are unwillingly forced to choose one

inadequate volume representation scheme from those discrete or continuous approaches.

The second difficulty is, it is often difficult to choose one accurate and adequate volume

representation scheme. Among many important aspects of volume representation and model-

ing, the accuracy is of utmost importance since only an accurate volume representation can be

used to provide valuable information for the model-based assessment. However, in existing ap-

proaches, several different representations are typically required throughout the representation

and modeling of real-world models in computerized environments. That is to say, each stage

within the entire representation and modeling pipeline, including modeling such as meshing

and material modeling, simulation, analysis, visualization, typically takes as input a different

representation of the modeled object, which requires costly and error-prone data conversions

throughout the entire modeling process. It will certainly introduce error into the pipeline. For

instance, in order to simulate the brain deformation, a linear solid mesh needs to be generated

for finite element methods (FEMs) from the voxel-based representation of the brain represent-
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ing the geometry of the brain, which has a highly convoluted cortical surface and many subtle

sub-cortical structures. Then, manual material editing needs to be conducted to assign material

properties to solid meshes. The FEM properties are linearly interpolated during simulation and

resampled once again to voxels’ intensities for visualization. Certainly, conversions among

volumetric datasets, solid meshes, finite elements, and voxels based on linear interpolation or

resampling will introduce error. In addition, more errors will be brought into the pipeline as the

constructed linear solid mesh may not well represent both geometry and material distribution

simultaneously. The geometric, physical, and mechanical properties are not tightly integrated

into the simulation. As a result, the current practice impedes the accurate modeling and sim-

ulation of digital models of real-world objects. With ever-improving computing power comes

the strong demand for more accurate, robust, and powerful solid modeling and simulation par-

adigms that are efficacious for the modeling, simulation, analysis, and visualization of digital

models of real-world objects.

In order to bridge the gap and overcome the aforementioned deficiencies, in this disserta-

tion, we propose an integrated computational framework based on dynamic multivariate sim-

plex splines (DMSS) that can greatly improve the accuracy and efficacy of modeling and simu-

lation of heterogenous objects since the framework can not only reconstruct with high accuracy

geometric, material, and other quantities associated with heterogeneous real-world models, but

also simulate the complicated dynamics precisely by tightly coupling these physical properties

into simulation. The integration of geometric modeling and material modeling is the key to the

success of representation of real-world objects.

In sharp contrast to existing techniques, our framework uses a single representation that re-

quires no data conversion. The advantages of our framework result from many attractive prop-

erties of multivariate splines. In comparison with tensor-product B-splines or NURBS, multi-

variate simplex splines are non-tensor-product in nature. They are essentially piecewise poly-

nomials of the lowest possible degree and the highest possible continuity everywhere across
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their entire tetrahedral domain. For example, given an object of simplex splines with degree

n, it can achieveCn−1 continuity. Furthermore,C0, other varying continuities, and even dis-

continuity can be accommodated through different knot and control point placements and/or

different arrangements of domain tetrahedra in 3D. Furthermore, simplex splines are ideal to

represent heterogeneous material distributions through the tight coupling of control points and

their attributes. From dynamic simulation’s point of view, they are finite elements which can

be directly brought into finite element formulations and physics-based analysis without losing

any information. Finite elements can be derived directly from the simplex spline representation,

which can also be visualized via volumetric ray-casting without discretization [25]. Trivariate

simplex splines are obtained through the projection ofn-dimensional simplices onto 3D. Pro-

jecting them one step further onto 2D for visualization results in bivariate simplex splines of

one degree higher than the original solid model, therefore, simplex splines facilitate the visu-

alization task with an analytical, closed-form formulation. It is not necessary to perform any

resampling and/or interpolation operations. Local adaptivity and local/global subdivision via

knot insertion can be readily achieved.

The novelties of this framework can be summarized as follows:

• Unification. We develop an integrated volume representation and modeling framework

which seamlessly integrates geometric properties, physical properties, and dynamic be-

haviors of real-world objects together. The consistent, unified representation throughout

each stage of modeling is a single degreen dynamic multivariate simplex spline. Hence

in downstream processes such as analysis, visualization, and simulation, it is unnecessary

to resorting to other representation approaches.

• Accuracy. The heterogenous model reconstructed from the digitalization of a real-world

object is faithful and of high-fidelity in terms of its geometry and material distribution.

The model reconstruction procedure is automatic, and the maximal fitting error to the

original data can be controlled by user’s specification interactively.
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• Efficiency. The proposed volume representation and modeling framework can achieve

a faster performance than other B-spline based approaches in terms of assessment. This

mainly attributes to the non-tensor-product property of multivariate simplex splines.

Hierarchical continuous simplices greatly improve the evaluation of the heterogenous

model without introducing extra unnecessary complexity into the framework.

• Flexibility. The framework is capable of representing heterogenous objects in real world

of complex geometry and arbitrary topology. since its domain is intrinsically arbitrary

tetrahedralization, the framework can represent and model high genus real-world objects

naturally, without complicated trimming and patch operation. With the shared and/or

non-shared control points assignments and different domain tetrahedra placements, we

can also obtain continuous object representation as well as discontinuity without extra

work flexibly.

• Robustness. Our volume representation and modeling paradigm is naturally a robust

analytic approach with closed-form formulation. The geometry and physical properties

of the volumetric model can be computed using the analytic representation without any

need for numerical approximations such as cubic interpolation or quadratic resampling.

Hence, physical simulation, including all downstream processes, such as analysis and

evaluation, can be achieved more accurately and robustly.

• Versatility. We successfully apply the dynamic multivariate simplex splines (DMSS)

scheme in several challenging volume related research topics such as volume reconstruc-

tion, nonrigid volume registration and physically based volume modeling and simulation.

Preliminary experimental results demonstrate that our DMSS based framework has great

potentiality to provide a versatile solution for volume representation and modeling.
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1.2 Contributions
We have systematically developed the proposed framework based on dynamic multivariate

simplex splines (DMSS) for volume representation and modeling of heterogeneous objects

acquired from real-world. Based on this integrated framework, my research work has been

fruitful in my Ph.D. study with important contributions to both academia and medical domain

in the following problems:

• Reconstruction and Visualization of Medical Volume (Chapter 3) The

histopathological study of tissue is an important tool in the medical field for the progno-

sis of disease. Although informative in itself, histological slices are traditionally viewed

under optical microscope to reveal only a 2D image. Hence medical professionals in-

evitably have an increasing demand of exploring the 3D structure of the tissue. There-

fore we presented an effective framework for the reconstruction and visualization of

volumetric data from a sequence of 2D images using multivariate simplex spline as its

volume representation approach. The 2D images are first aligned to generate an initial

3D volume, followed by the creation of the tetrahedral domain. Then a solid model is

reconstructed using multivariate simplex splines with fitting and fairing procedures. The

reconstructed heterogenous volumetric model can be quantitatively analyzed and easily

visualized. We conduct extensive experiments using histology samples, and our empir-

ical results demonstrate that the proposed paradigm significantly augments the current

techniques within the medical, modeling, and visualization communities. Although we

focus mainly on the volumetric reconstruction of 3D histology for the biomedical do-

main, the applications of our technique is diverse, including material editing and recon-

struction, volume simplification, data exploration and visualization in geological fields,

and so on. Novel techniques and algorithms proposed in this project can be applied to

reconstruct heterogeneous solid model with complex geometry and topology from other

visual data. This part of work has been published in the conference proceedings ofCom-
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puter Graphics International, 2007, then it was invited toThe Visual Computer, which

is one of the most prestigious computer science journals specialized in visualization.

• Registration and Visualization of Nonrigid Volume (Chapter 4) Non-

rigid registration of intermodality and intramodality images is playing an increasingly

important role both in medical and research realms for the reason many medical activi-

ties often rely on the complementary information retrieved from different images, which

are usually obtained from intermodality or intramodality. Existing volume registration

algorithms using free-form deformation scheme based on tensor product B-spline vol-

umes, although well established, have severe drawbacks such as expensive computational

demand, topological limitation of the model, awkward multiresolution support, etc. In

stead, we propose a novel nonrigid volume registration framework using multiresolution

volumetric simplex spline based free-form deformation to achieve more efficiency, flex-

ibility, and accuracy. With the native non-tensor product property of simplex spline and

its true multiresolution support, the computational cost of our framework was reduced to

one third that of tensor product B-spline volume scheme. By applying multiresolution

volumetric simplex spline as the volume representation scheme, other downstream appli-

cations can be easily and steadily achieved, such as medical volume visualization, lesion

repositioning, correlation analysis, etc. We have successfully applied the framework to

the registration of magnetic resonance imaging brain volumes and the preliminary exper-

imental results demonstrate the powerful potentiality of our framework being employed

to register volumes acquired from intermodality and intramodality imaging systems in

other biomedical applications. This part of work has been submitted toSPM 2010: ACM

Solid and Physical Modeling Symposiumand now it is under the first round review.

• Physically Based Modeling, Simulation and Visualization (Chapter 5)

For a long time, researchers dedicated into realms of physically based modeling and

simulation have been eagerly awaiting an integrated volume representation of geometric
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and material properties. The representations prevalently used nowadays are oftentimes

discrete in nature, although ideal for visualization, it is less suitable for modeling contin-

uously varying material attributes without resorting to approximation. Although tensor

product B-spline based representations can achieve the continuities of the model to some

extent, they have severe drawbacks in high genus support. Existing modeling and sim-

ulation approaches, several different representations are typically required throughout

the representation and modeling of real-world models in computerized environments.

Hence we proposed integrated computational framework based on dynamic multivariate

simplex splines that can greatly improve the accuracy and efficacy of modeling and sim-

ulation of heterogenous objects. The proposed framework can not only reconstruct with

high accuracy geometric, material, and other quantities associated with heterogeneous

real-world models, but also simulate the complicated dynamics precisely by tightly cou-

pling these physical properties into simulation. We have successfully applied the frame-

work for biomechanic simulation of brain deformations, such as brain shifting during

the surgery and brain injury under blunt impact. The evaluations demonstrate the ex-

cellent performance of our new technique. This part of work has been published in the

conference proceedings ofACM Solid and Physical Modeling Symposium, 2008, then it

was invited toComputer-Aided Design, which is one of the most prestigious computer

science journals specialized in the realm of CAD.

1.3 Dissertation Organization
The dissertation is organized in the following way.Chapter 2briefly reviews the theo-

retical background of dynamic multivariate simplex splines and the volume related research

topics such as volume reconstruction, nonrigid volume registration, and physically based vol-

ume modeling and simulation.Chapter 3presents an effective paradigm for reconstruction of

volumetric data from a sequence of 2D images using our DMSS framework. An efficient com-

putational algorithm for nonrigid volume registration using multivariate simplex spline based
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free-form deformation will be presented inChapter 4. Chapter 5further introduces our DMSS

framework into the physically based modeling and simulation area and employ the framework

to model and simulate the biomedical behaviors of human brain. Finally,Chapter 6summa-

rizes the presented framework and points towards the future work along this research direction.
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CHAPTER 2:
BACKGROUND

My dissertation research work, DMSS, is based on previous work in volume representation

and modeling. In this section we review the prior work done in these related research fields.

Note that there are a lot of schemes of volume representation and modeling and we only re-

view the commonly-used ones of them in the interest of space. This chapter is organized as

follows. Chapter 2.1reviews volume representation schemes, including parametric ones and

nonparametric ones. A brief comparison of these approaches will be presented at the end of this

chapter.Chapter 2.2andChapter 2.3review representative solid volume modeling approaches

and physically based modeling approaches, respectively.

2.1 Volume Representation Approaches
There are many other volume representation approaches. Among them, we only survey

two widely-employed parametric representatives, tensor product B-spline and quadratic super

spline.

2.1.1 Parametric Volume Representation Approaches

Tensor Product B-spline Volumes

Analogous to tensor product B-spline surfaces, we can use tensor product uniform trivariate

B-spline functions for the object representation. Like all tensor product B-spline functions,

these trivariate functions have a control-volume that consists of scalar coefficients,Pijk ∈ R.

These trivariate functions are of the form:

q(u, v, w) =
i−1∑
i=0

m−1∑
j=0

n−1∑
k=0

PijkBi(u)Bj(v)Bk(w), (2.1)

whereBi(u), Bj(v) andBk(w) are the uniform B-spine basis functions,Pijk are the scalar

coefficients in a volumetric mesh of sizel ×m× n, andq(u, v, w) is a scalar function.

Although intuitive and concise, tensor product B-spline can only representG0 solid model
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which greatly confines its application. To extend its application, Raviv and Elber [67] presented

a three dimensional interactive sculpting paradigm that employed a collection of scalar uniform

trivariate B-spline functions.

Quadratic Super Spline Volumes

Rösslet al. [71, 72, 73] presented quadratic super splines to reconstruct solid models from

structure-gridded volume samples.

The splines they developed, are piecewise polynomials of lowest possible total degree,

where the polynomial pieces have the form
∑

i+j+k≤2 ai,j,kx
iyjzk, whereai,j,k ∈ R, i+j+k ≤

2. Thus the total degree is2.

Let ♦ be a uniform cube partition of the cubic domainΩ = [0, n]3 ⊆ R3, where every

cubeQ ∈ ♦ has edge length1. A more general domain can be achieved by trimming and

patching the domain, shown inFigure 2.1-(a). They divided each of then3 cubesQ into six

Egyptian pyramids by connecting its center pointvQ with the four vertices of every face of

Q. Then, they inserted both diagonals into these six faces ofQ and connect their intersection

points withvQ. This subdivides each of the six pyramids inQ into four tetrahedra, forming a

natural, uniform tetrahedral partition∆ of Q, where every cubeQ ∈ ♦ contains24 congruent

tetrahedra.Figure 2.1-(b)illustrates the construction of∆. The partition∆ is a generalization

of the four-directional mesh which is well-known in the bivariate setting [55, 53, 52]. The

relation to the bivariate setting is shown inFigure 2.1-(c). Then they constructed consistent

splines which satisfy many smoothness conditions, and such splines are called “Super Splines”.

The space of quadratic super splines with respect toI is defined by

S2(∆) = s ∈ C(Ω) : s|T∈P2 , T ∈ ∆, (2.2)

ands is smooth atv, for all v vertices of♦, whereP2 = span{xiyjzk : i, j, k ≥ 0, i+j+k ≤ 2}

denotes the ten dimensional space of quadratic polynomials, i.e., the space of trivariate poly-

nomials of total degree two. In their approximation method, they employed quasi-interpolating
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(a) (b) (c)

Figure 2.1: (a) Example of a more general domainΩ than the unit cube; (b) The tetrahedral
partition∆ is obtained by uniformly subdividing each cube ofI into 24 tetrahedra; (c) The in-
tersections of∆ with planes parallel to the three coordinate planes are four-directional meshes
which are well-known from the bivariate setting.(Original image courtesy of Christian R̈ossl
et al. at Max-Plank-Institut and Universität Mannheim.)

splines fromS2(∆) which posses many additional natural smoothness properties. Mathemati-

cally speaking, this means that they deal with appropriate subspaces ofS2(∆) where the num-

ber of free parameters is considerably lower.

In essence, a splines ∈ S2(∆) can be written in its piecewise Bernstein-Bézier form [60,

61, 52, 51].

2.1.2 Nonparametric Volume Representation Approaches

In general, surfaces expressed by an implicit form can be formulated as:(x, y, z)|F (x, y, z) = c.

The functionF is called the implicit function, which defines the scalar field or the density field.

an implicit solid is the collection of all the level-sets whose return values are greater, or smaller,

than a given threshold. Formally it can be defined as:


w = F (x, y, z)

w > w0.

(2.3)

Although the basic idea is intuitive, the point lies in how to choose the implicit function.

In Hua and Qin [27, 28, 29], they collected different B-spline patches defined over the 3D

working space to form a volumetric implicit function that can be collectively used to repre-

sent objects of complicated geometry and arbitrary topology. Their solution was significantly
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different from frequently used parametric B-splines. In their environment, they enhanced the

scalar B-spline representation power by incorporating the modeling advantages from hierarchi-

cal splines, generalized CSG-based boolean operations, and nonuniform knot insertion. They

took N B-spline patches in the sculpting space into consideration, which are located at any

location and with any orientation. In general, these patches may be formulated by different

numbers of control coefficients in order to achieve the goal of multi-resolution analysis and

other operations. Consequently, the density value at the location(x, y, z) can be computed as:

F (x, y, z) =
N∑

i=1

si(Ti(x, y, z)), (2.4)

whereTi is an affine transformation from the Euclidian space to the parametric domain of patch

si. Since the B-spline has the property of affine invariance, this transformation can be easily

calculated. For each different patchsi, there is a corresponding transformationTi. Hence,

F (x, y, z) becomes a new volumetric implicit function defined over the 3D working space. In

essence,Equation 2.4is a hierarchical organization of theN patches.

2.1.3 Comparison between Volume Representation Schemes

Method Domain Topology High Genus Support

Tensor Product B-Splines Uniform Cube-shaped GridG0 Trimming and Patching
Quadratic Super Splines Uniform TetrahedralizationG0 Trimming and Patching
Implicit Functions No Any Not Necessary

Table 2.1: Comparison between different parametric schemes in volume representation and
modeling in terms of shape of the domain, topology support and high genus support.

The domain of tensor product B-spline volumes is a uniform cube and and the domain

of quadratic super spline volumes is a tetrahedralized cube, respectively. This confines the

solid volume represented areG0. The continuity of these two models are the corresponding

degree of the spline function. The degree of tensor product B-spline volume is the highest

degree of the three dimensions of the cube. For example, inEquation 2.1, the continuity is
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α = max{l − 1, m − 1, n − 1}. So the volume isCα. Intuitively, the quadratic super spline

volume isC1 continuous everywhere.

To model high genus volume, designer should do trimming and patching to the tensor

product B-spline volumes. Blending function should also be carefully chosen to guarantee

cross-boundary continuity. Quadratic super spline may represent high genus volumes, if a

more general tetrahedra domain is presented, as shown inFigure 2.1-(a).

Non-parametric volume’s continuity is mainly confined by the degree of its implicit func-

tion representation. For instance, In Hua and Qin’s work [29], the versatility of their dynamic

implicit modeling enables the user to easily modify both the geometry and the topology of

modeled objects.

2.2 Solid Modeling Approaches
Based on specific geometric representations, modeling techniques are employed to create

shapes from those representations. Since this dissertation research is centered on solid objects,

we mainly review solid modeling techniques. Generally, solid modeling involves the creation

and manipulation of complete, unambiguous mathematical representations of 3D objects. Tra-

ditional solid presentations fall into one of three fundamentally distinct categories: boundary

schemes, decomposition schemes, and constructive solid geometry.

2.2.1 Boundary Schemes

In a boundary representation (B-rep) scheme [3], objects are modeled as unions of their

boundaries or enclosing surfaces. The modeling power of B-reps depends on the allowed

classes of surfaces which may include planar polygons, quadrics, spline surfaces, and surface

patches. In most cases, the surfaces are limited to polynomials of small degree, and ensuring

geometric continuity of patched surfaces is difficult, if not impossible. Additionally, topolog-

ical information consisting of connectivity relationships between geometric entities must be

provided to fully represent a solid. A variety of schemes have been proposed for representing

topological information, but maintaining a formally valid B-rep is inevitably a tedious process.
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2.2.2 Decomposition Schemes

Decomposition schemes have three general forms: spatial enumeration, cell decomposi-

tion, and octree encoding. Spatial enumeration is perhaps the oldest and most direct approach

to solid modeling. The “world” is composed of a three dimensional grid of cuboids and an

object is represented as the union of cells which contain part of the object. Correct object

representations are easy to maintain but difficult to create due to the simplistic structure. Cell

decomposition [43], typically employed for finite element mesh generation, is a generalization

of spatial enumeration in which objects are represented as the union of simple primitives which

are not required to have the same size or shape. The octree method is similar to both spatial

enumeration and cell decomposition in that objects are modeled as a collection of fundamental

primitive solids or cells. However, the representation is made more efficient by organizing the

cells in an eight-ary tree. Cells which are partially full can then be subdivided, but the required

storage increases exponentially as the tree depths increase.

2.2.3 Constructive Solid Geometry

Constructive solid geometry (CSG) has its origins in the work of Rvachev [77, 81], and

Voelcker and Requicha [68]. Objects are organized as a collection of primitive solids, which

are leaves of a tree whose nodes correspond to Boolean operators that perform unions, inter-

sections and differences. The number and types of allowed primitives control the scope of the

representation. Topology is stored both implicitly (in the tree structure and set operators) and

explicitly (in the primitive objects), and formally valid object representations are easily main-

tained. CSG is appealing due to its intuitive formulation which is directly analogous to phys-

ical manufacturing processes where complicated solids are created by “cutting and pasting”

together primitive solids. Although we categorize solid modeling techniques into three funda-

mentally distinct categories, the currently-used solid modeling techniques oftentimes combine

two or three of them together in order to enhance the modeling capability. Also, there are some

invariants of these three techniques. Note that these solid modeling techniques can be used on
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the aforementioned geometric representations.

2.3 Physically Based Modeling Approaches
In recent years, physics-based modeling has emerged as an important approach in com-

puter graphics. Generally, physics-based modeling techniques augment geometric objects with

physical attributes such as mass, damping and stiffness distributions. Physics-based models

are governed by the mechanical laws of continuous bodies, which can be expressed in the form

of dynamic differential equations. The dynamic and realistic behaviors can be obtained by

solving an associated motion equation numerically.

2.3.1 Deformable Models

Free-form deformable models were first introduced to computer graphics by Terzopoulos

et al. [92]. They employed elasticity theory to construct differential equations that model the

behavior of non-rigid curves, surfaces, and solids as a function of time. Elastically deformable

models respond in a natural way to applied forces, constraints, ambient media, and impen-

etrable obstacles. The equations governing a deformable model’s motion can be written in

Lagrange’s form as follows:

∂

∂t
(µ

∂r

∂t
) + γ

∂r

∂t
+

δε(r)

δr
= f(r, t), (2.5)

wherer(a, t) is the position of the particlea at timet, µ(a) is the mass density of the body at

a, γ(a) is the damping density, andf(r, t) represents the externally applied forces.ε(r) is a

functional which measures the net instantaneous potential energy of the elastic deformation of

the body.

The external forces are balanced against the force terms on the left hand side ofEquation

2.5 due to the deformable model. The first term is the internal force due to the model’s dis-

tributed mass. The second term is the damping force due to dissipation. The third term is the

elastic force due to the deformation of the model away from its natural shape. Then, the poten-
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tial energy of deformation for elastic models can be used as the measure of the deformation.

By applying the external forces to the elastic models, we can achieve realistic dynamics.

To solveEquation 2.5with a computer, the continuous dynamic model may be discretized

as follows:

Mc̈ + Dċ + Kc = f , (2.6)

wherec is the position vector of the collection of sample points on the discretized mesh,M is a

mass matrix,D is a damping matrix,K is a stiffness matrix, and the force at every mass-point

in the mesh is the sum of all possible external forces:f =
∑

fext. The deformable model

then can be computed by numerical approaches such as the finite-difference method or the

finite-element method. Later on, deformable models were further developed by Pentland and

Williams [58], and Metaxas and Terzopoulos [44]. Gibson and Mirtich [19] gave a good survey

on deformable models in computer graphics. More recently, James and Pai [30] presented an

algorithm for fast, physically accurate simulation of deformable objects suitable for real time

animation and virtual environment interaction. Pai [54] also presented Cosserat-type physical

models for interactive simulation of thin elastic solids, which are visually well approximated

as smooth curves, and yet possess essential physical behaviors characteristic of solid objects.

2.3.2 Physics-based Geometric Design

Physical simulation can be used as an effective, interactive tool for building and manipulat-

ing a wide range of models. It supports the dynamic manipulation of complex physical models.

However, less effort has been applied to free-form dynamic interaction between designers and

individual manufactured objects, which is especially useful for geometric design. Physics-

based geometric design allows designers to directly manipulate and interactively sculpt shapes

using a variety of force-based tools. It affords designers a natural and intuitive interaction with

geometric objects. It appeals to a spectrum of users ranging from highly-trained engineers,

computer professionals and artists, to even naive users with little computer skill.

Qin and Terzopoulos [66, 65, 93] developed D-NURBS by marrying advanced geometric
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modeling with computational physics, which is an extension to traditional NURBS that permits

more natural control of the surface geometry. In order to assign physical properties to the

surface, they augment the geometric formulation with time information:

s(u, v, t) =

∑m
i=0

∑n
j=0 wi,j(t)pi,j(t)Ni,k(u)Nj,l(v)∑m

i=0

∑n
j=0 wi,j(t)Ni,k(u)Nj,l(v)

, (2.7)

where the control pointspij(t) and weightswij(t) are functions of time, comprising the D-

NURBS generalized coordinates. Therefore, the velocity of the surface as well as the surface

can be formulated by

ṡ(u, v,p) = Jṗ, s(u, v,p) = Jp, (2.8)

whereJ(u, v,p) is the Jacobian matrix of D-NURBS surface with respect to generalized co-

ordinates p. The equations of motion of the D-NURBS model are derived by applying the

Lagrangian dynamics and numerically solved by the finite element method.

Although D-NURBS is a powerful physics-based geometric design framework, the NURBS-

based dynamic model cannot represent objects of arbitrary topology. Therefore, Qinet al. [63]

introduced a dynamic Catmull-Clark subdivision model in 1998. Mandal and Qin [40] further

generalized this model to any subdivision scheme. Later, McDonnell and Qin [42] extended the

dynamic subdivision techniques to solids, which makes the dynamic framework of subdivision

models even more powerful for shape design and manipulation.

2.3.3 Geometric Modeling with Particle Systems

Particle systems consist of a large number of particles moving under the influence of exter-

nal forces such as gravity, vortex fields, and collisions with stationary obstacles. Particles are

objects that have mass, position, velocity, acceleration, and other attributes. Particles can be

made to exhibit a wide range of interesting behavior such as join, split, or stretch operations, or

simulate natural phenomena. There are mainly two types of particle systems: interacting and



www.manaraa.com

19

non-interacting particle systems. For modeling with interacting particle systems, ideas from

molecular dynamics have been used to develop models of deformable materials using collec-

tions of interacting particles. In these models, long-range attraction forces and short-range

repulsion forces control the dynamics of the system. Typically, these forces are derived from

an intermolecular potential function such as the Lennard-Jones function,

φLJ(r) =
B

rn
− A

rm
. (2.9)

The forcefij attracting a particle to its neighbor is computed from the derivative of the

potential functionfij = −OrφLJ(‖rij‖), whererij = pj − pi is the vector distance between

particlesi andj. Particle systems whose dynamics are governed by potential functions and

damping will evolve towards lower energy states. In 3D the particles will arrange themselves

into hexagonally ordered layers. They are naturally used to model solid objects via applied

external forces [96].

However, it is rather hard to model surfaces with particle systems, since, in the absence

of external forces and constraints, 3D particle systems prefer to arrange themselves into solids

rather than surfaces. Szeliski and Tonnesen [86] introduced oriented particle systems. They

added an orientation to each particle’s state and devised new interaction potentials for the

oriented particles which favor locally planar or spherical arrangements. Therefore, oriented

particle systems can be used to model more flexible surfaces.
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CHAPTER 3:
VOLUME RECONSTRUCTION WITH MULTIVARIATE
SIMPLEX SPLINES

This chapter presents an effective framework for the reconstruction of volumetric data from

a sequence of 2D images using proposed multivariate simplex spline as its volume represen-

tation approach. The 2D images are first aligned to generate an initial 3D volume, followed

by the creation of a tetrahedral domain using the Carver algorithm. The resulting tetrahe-

dralization preserves both geometry and topology of the original dataset. Then a solid model

is reconstructed using simplex splines with fitting and faring procedures. The reconstructed

heterogenous volumetric model can be quantitatively analyzed and easily visualized. Our ex-

periments demonstrated that our approach can achieve high accuracy in the data reconstruction.

Novel techniques and algorithms proposed in this chapter can be applied to reconstruct hetero-

geneous solid model with complex geometry and topology from other visual data.

3.1 Introduction and Motivation
In the past few years, an unstructured volume representation has started to emerge as a

viable modeling tool, where a tetrahedral mesh is exploited to dictate the domain of a vol-

ume [9, 97, 8, 74]. This type of representation is expected to become increasingly popular as

modeling and visualization of geometric structures plus physical attributes of heterogeneous

objects become commonplace. To satisfy the modeling requirement of high-order continuity

in heterogeneous objects, volumetric modeling based on splines, such as B-splines or NURBS

[67, 78, 41, 28, 29], appear to be more appropriate. Nonetheless, modeling with B-splines or

NURBS has serious limitation. Its modeling scope is extremely constrained in term of geomet-

ric, topological, and attribute aspects.

We aim to design a representation with flexible, hierarchical continuous simplices. In order

to reconstruct a heterogenous model of high accuracy, a unified volume modeling and recon-

struction based on hierarchical trivariate DMS-splines is proposed in this chapter. Our method
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has the following advantages:

• It explores the intrinsic image features of a histology section, making it a fully automatic

procedure without human intervention during the reconstruction.

• Our model makes use of a more general and flexible tetrahedral domain, laying a founda-

tion for both visualization and modeling tasks. The unstructured volume being modeled

can be of complicated geometry and arbitrary topology.

• The trivariate DMS-spline based representation offers a single, compact analytical rep-

resentation, because it is a piecewise polynomial of the lowest possible degree and the

highest possible continuity across the entire tetrahedral domain.

• This trivariate DMS-spline based representation can also enable the strong multiresolu-

tion modeling capability through interactively subdividing any region of interest, allocat-

ing more knots and control points accordingly. The volume can be represented at desired

resolution by extracting specific layers from the hierarchical simplices.

• Our method can adaptively refine the domain tetrahedra with hierarchical simplices,

which introduces more degrees of freedom, leading to better fitting results.

We conduct extensive experiments using histology samples, and our empirical results demon-

strate that the proposed paradigm significantly augments the current techniques within the med-

ical, modeling, and visualization communities. Although we focus mainly on the volumetric

reconstruction of 3D histology image sequence for the biomedical domain, the applications of

our technique is diverse, including material editing and reconstruction, volume simplification,

data exploration and visualization in geological fields, and so on.

The chapter is organized in the following way.Chapter 3.2enumerates several milestones

achieved by pioneers dedicated to this area.Chapter 3.3contains the condensed theoretical

principal of multivariate simplex splines.Chapter 3.4illustrates the tetrahedral domain extrac-

tion procedure which creates tetrahedral mesh for further use in modeling and reconstruction.
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Chapter 3.5exhibits 3D volume reconstruction using simplex fitting and faring with hierar-

chical simplices. Experiments and discussion will be presented inChapter 3.6followed by a

conclusion inChapter 3.8.

3.2 Previous Work
Many research efforts from the medical imaging community have been devoted to estab-

lishing techniques for 3D histology analysis and visualization. Chanet al. proposed a method-

ology for making optimal registration decisions during 3D volume reconstruction [5]. A semi-

automatic registration technique for 3D volume reconstruction from fluorescent laser scanning

confocal microscope (LSCM) imagery was presented by Leeet al. [34]. They later proposed

a fusion-based approach to address the problem of 3D volume reconstruction from depth adja-

cent sub-volumes acquired using a confocal laser scanning microscope (CLSM) [35]. Tanet al.

presented a feature curve-guided alignment algorithm to register microscopic slices based on

the NURBS-based optimization of the extracted feature curves from the microscopic data [88].

Readers may find other relevant literature in [7, 1, 70].

Volume modeling and rendering via tetrahedral mesh has recently gained more popularity

as well. Researchers are primarily interested in constructing or using the volumetric tetrahedral

mesh dataset to achieve better rendering effects. Cignoniet al. [9] proposed a multi-resolution

model for the representation and visualization of unstructured volumetric datasets based on

a decomposition of the 3D domain into tetrahedra. Later, they presented a tetrahedral mesh

simplification approach based on accurate error evaluation [8]. Roxborough and Nielson [74]

presented a method for the visualization of freehand collected 3D ultrasound data based on

adaptive, progressive construction of the tetrahedral mesh. A tetrahedral mesh structure to rep-

resent anatomical structures was adopted by Yao and Taylor [105]. They proposed an efficient

and automatic algorithm to construct a tetrahedral mesh from contours in CT images. A rich

body of previous work on tetrahedral meshes suggest that a simplicial complex is potentially

promising to serve for both visualization and modeling.
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Even though volume modeling using univariate splines, such as B-splines or NURBS,

has received much attention from modeling and visualization communities in recent years

[67, 78, 28, 41], multivariate simplex splines-based volume techniques based on a domain

of simplices are less explored. They have only been extensively investigated in mathemat-

ical science. Motivated by an idea of Curry and Schoenberg for a geometric interpretation

of univariate B-splines, de Boor [56] first presented a brief description of multivariate sim-

plex splines. Since then, their theoretical perspectives have been explored extensively. From

the blossoming point of view, Dahmenet al. [13] proposed triangular B-splines. Since then,

Seidel and his colleagues demonstrated the practical feasibility of bivariate DMS-splines in

graphics and shape design in [21, 60]. In sharp contrast to theoretical advances, the application

of trivariate simplex splines has been severely under-explored. Huaet al. [25] initiated using

simplex spline for heterogeneous solid modeling and derived several theoretical formula for

fast rendering of the simplex spline volumes. Recently, Rösslet al. [56] presented a novel

approach to reconstruct volume from structure-gridded samples using trivariate quadric super

splines defined on a uniform tetrahedral partition. They used Bernstein-Bézier techniques to

compute and evaluate the trivariate spline and its gradient. Also, the exact intersection for a

ray and prescribed isovalue can be easily determined in an analytic and exact way. The major

difference between R̈osslet al. ’s method and ours lies in:

• Our method uses arbitrary tetrahedral domain instead of regular.

• Our method uses a general trivariate DMS-splines of degreen ≥ 2 which has more

degrees of freedom (control points and knots); the continuity between adjacent tetrahedra

can be easily maintained because of the optimal smoothness of DMS-splines.

• Our method uses hierarchical structures to model level-of-details.



www.manaraa.com

24

3.3 Multivariate Simplex Spline Volume
In this section, we first briefly review multivariate simplex splines, which are the theoretical

background throughout my dissertation. Then, we formalize the volume representation based

on the multivariate simplex splines.

3.3.1 Multivariate Simplex Splines Definition

A degreen multivariate simplex spline,M(x|x0, · · · ,xn+3), can be defined as a function

of x ∈ R3 over the half open convex hull of a point setV = [x0, · · · ,xn+3), depending on the

n+4 knotsxi ∈ R3, i = 0, · · · , n+3. The multivariate simplex splines may be formulated re-

cursively, which facilitates point evaluation and its derivative and gradient computation. When

n = 0,

M(x|x0, · · · ,x3) =


1

|VolR3 (x0,··· ,x3)| , x ∈ [x0, · · · ,x3),

0, otherwise,

and whenn > 0, select four pointsW = {xk0 ,xk1 ,xk2 ,xk3} from V, such thatW is affinely

independent, then

M(x|x0, · · · ,xn+3) =
3∑

j=0

λj(x|W)M(x|V \ {xkj
}), (3.1)

where
∑3

j=0 λj(x|W) = 1 and
∑3

j=0 λj(x|W)xkj
= x.

The directional derivative ofM(x|V) with respect to a vectord is defined as follows:

DdM(x|V) = n
3∑

j=0

µj(d|W)M(x|V \ {xkj
}), (3.2)

whered =
∑3

j=0 µj(d|W)xkj
and

∑3
j=0 µj(d|W) = 0.

3.3.2 Multivariate Simplex Spline Volume Definition

Now let T be an arbitrary “proper” tetrahedralization of the bounded domainD ⊂ R3.

Here, “proper” means that every pair of domain tetrahedra are disjoint, or share exactly one
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vertex, one edge, or one face. To each vertext of the tetrahedralizationT, we assign a knot

cloud, which is a sequence of points[t0, t1, · · · , tn], wheret0 ≡ t. We callt primary-knot

and[t1, · · · , tn] sub-knots.Figure 3.1-(a)shows 4 vertices with cubic knot clouds associated,

which are labeled asp,q, r, or s group, respectively. The primary-knots are rendered with

yellow dots and sub-knots with blue dots. We will use these two colors to differentiate the

primary-knots and sub-knots in the rest illustrations.

For every tetrahedronI ∈ T, assumeI = (p,q, r, s) = (p0,q0, r0, s0). We call(p,q, r, s)

the underlying tetrahedron. All the other tetrahedra[pi,qj, rk, sl] with 0 < i + j + k + l ≤ n

are called the virtual tetrahedra.Figure 3.1-(a)shows the underlying tetrahedron with shading.

Figure 3.1-(b)demonstrates the virtual tetrahedra rendered with different shading colors.

(a) (b)

Figure 3.1: (a) A domain tetrahedron demonstrated with its knot clouds assigned and labeled.
The underlying tetrahedron,(p,q, r, s), is rendered as a shaded tetrahedron; (b) The virtual
tetrahedra of the domain tetrahedron are visualized in different colors with the opacity value
of 0.4. In (a) and (b), the degree of the domain is cubic hence each vertex of the tetrahedron
has three sub-knots. The primary-knots are presented with yellow dots while sub-knots are
depicted with blue dots. The red lines connecting the primary-knots indicate the underlying
tetrahedron. Each green line here denotes the association between primary-knot and sub-knot.

Then for every tetrahedronI, we require
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• all the tetrahedra[pi,qj, rk, sl] with i + j + k + l ≤ n are non-degenerate, i.e., the

underlying tetrahedron and virtual tetrahedra should be valid.

• the set

Ω = interior(∩i+j+k+l≤n[pi,qj, rk, sl]) (3.3)

is not empty.

• if I is a boundary tetrahedron, the sub-knots assigned to the boundary vertices must lie

outside ofD.

The condition thatΩ is nonempty states that the sub-knots associated with different vertices

of I are all separated from each other. The underlying tetrahedronI and its virtual tetrahedra

have the same orientation. As shown inFigure 3.1-(a), in our framework, the orientation of the

tetrahedron is defined as, observing frompi, the triangle formed by(qj, rk, sl) is clockwise-

oriented wherei + j + k + l ≤ n.

The formation ofΩ can be intuitively described as: starting from the underlying tetrahe-

dron, we chop it using the triangle faces from each virtual tetrahedron, and only keep the part

inside of the triangle faces. As the starting shape of the underlying tetrahedron is convex, the

chopping operation will not affect its convexity. Hence the final shape ofΩ is a convex, solid

polyhedron if nonempty.

Figure 3.2-(a)andFigure 3.2-(b)depict theΩ of a cubic domain tetrahedron, with and

without virtual tetrahedra rendered, respectively. Note that ifΩ 6= ∅, Ω must be a convex solid

polyhedron formed by the interior of the underlying tetrahedron and virtual tetrahedra.Figure

3.2-(a)andFigure 3.2-(b)illustrate theΩ as a blue, convex, and solid polyhedron.

We then define, for each tetrahedronI ∈ T andi + j + k + l = n (in the following, we use

β to denote 4-tuple(i, j, k, l)), the knot sets are

V I
β = [p0, · · · ,pi,q0, · · · ,qj, r0, · · · , rk, s0, · · · , sl]. (3.4)
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(a) (b)

Figure 3.2: (a) TheΩ of a domain tetrahedron, formed by the interior of the underlying tetra-
hedron and virtual tetrahedra, is rendered with a blue polyhedron. The virtual tetrahedra are
visualized in different colors with opacity value 0.1; (b) The virtual tetrahedra are removed to
better visualize theΩ.

For an example inFigure 3.1andFigure 3.2, as the degree of the domain is cubic,V I
β has

16 elements: 4 primary-knots and 12 sub-knots.

The basis functions of normalized simplex splines are then defined as

N I
β(u) = | det(pi,qj, rk, sl)|M(u|V I

β ). (3.5)

These basis functions can be shown to be all non-negative and to form a partition of unity. The

multivariate spherical simplex spline volume is the combination of a set of basis functions with

control pointscI
β:

s(u) =
∑
I∈T

∑
|β|=n

cI
βN I

β(u). (3.6)

The “generalized” control pointscI
β are now(k + 3)-dimensional vectors, including control

points(px, py, pz) for the solid geometry, and control coefficients(g1, · · · , gk) for the attributes,

wherek denotes the number of attributes associated with the geometry. The spherical simplex
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splines are ideal to model genus-zero, heterogeneous solid objects. The number of physical

properties is application-oriented. For a concise expression of the formulation, without loss of

generality, we will deal with only one physical attribute in the following formulas.

3.4 Tetrahedral Domain Construction
In our volume reconstruction algorithm, we plan to employ multivariate simplex spline as

the volume representation approach due to its attractive properties described before. The first

important step is to construct a good initial tetrahedralization basis for the later data fitting and

faring steps. When starting with a good initial tetrahedralization, the later refinement compu-

tation will be greatly reduced. The good initial domain tetrahedralization should preserve both

geometric and attribute features of the original volume dataset.

3.4.1 Initial Alignment of 2D Slices

Before the structure of 3D histology can be explored and analyzed, generating a high-

fidelity 3D volume is a crucial and preliminary step in which all histology slices need to be

stacked into one volume. Structure-gridded volume data structure can be employed here and

we choose Analyze7.5 file format, which is already a well-established industry standard.

First, 2D histology slices are scanned into the computer through a digital histology film

scanner. This high resolution equipment can produce quality images with detailed cell struc-

tures. In this step, necessary image processing filters, for instance, Gaussian smoother, will be

applied to the raw data due to the inevitable noises.Figure 3.3shows a part of a sequence of

2D images scanned from a histology sectioning profile.

Between two neighboring histology sections, there is no high-order discontinuity in struc-

ture, i.e., there exists substantial similarities which can be used to match adjacent slices. Based

on this observation, we need to minimize the following equation:

min DIFFden =
n−1∑
i=1

‖I(i)− T · I(i + 1)‖2, (3.7)
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Figure 3.3: A part of a sequence of 2D images scanned from a histology sectioning profile.
Histology structures gradually change from slice to slice.

whereI(i) indicates the density distribution ofith slice. I(i + 1) is subject to the affine trans-

formation matrixT . Here we select theith slice as the stationary one, and apply affine trans-

formation to the(i + 1)th slice. The correspondent affine transformationT is a4× 4 matrix as

below:



x′

y′

z′

1


= T



x

y

z

1


(3.8)
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whereT =



t00 t01 t02 t03

t10 t11 t12 t13

t20 t21 t22 t23

t30 t31 t32 t33


, and



x

y

z

1


denotes the original position of a voxel and



x′

y′

z′

1


denotes the transformed position. Because we use homogeneous coordinates here, the

position vector inEquation 3.8is extended to order4. HereT is the combination of rotation

factor and translation factor.Equation 3.7is essentially a least square problem. Solving this

system, we can obtain a set of transformations which construct an initial alignment of all 2D

histology sections.

3.4.2 Carver Algorithm for Tetrahedralization

Constraint Delaunay Tetrahedralization (CDT) [15] is the most widely used algorithm to

construct tetrahedral mesh. However, CDT works great only for those models from which

corresponding isosurfaces can be explicitly extracted, i.e., those with simple geometry. To

increase the versatility of our framework, we develop another algorithm for those without such

well-defined isosurfaces, e.g., histology models. The algorithm fulfills the objective in two

major steps: 1) arbitrary Delaunay tetrahedralization, and 2) outside tetrahedra removal using

Carver Algorithm. The detail steps of our algorithm are described as follows:

1. FromChapter 3.4.1, what we obtain is a structure-gridded volume. The first step here

is to down-sample the volume to get finite discretized points which are the later vertices

of the tetrahedral domain. It’s intuitive that we shall have more tetrahedra in the feature

area. More points in feature-dense areas and less points in uniform areas are selected

according to the voxels’ intensity variation levels. Here, we simply use gradients of

physical attributes as the level stated.Figure 3.4-(a)shows the discretized point sets.
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2. Then we use the points selected from the initial volume as the vertices input ofgenus−

zero Delaunay tetrahedralization. After arbitrary Delaunay tetrahedralization, the initial

genus − zero tetrahedral mesh is retrieved with the convex hull of the vertices as its

boundary mesh. Accordingly, more tetrahedra will be created in the feature area due to

more vertices presented and vice versa.Figure 3.4-(b)is the mesh created by arbitrary

Delaunay tetrahedralization.

3. Starting from one user specified tetrahedron, neighboring tetrahedra will be removed re-

cursively. Those removed tetrahedra form another object, namely “OUTSIDER”, and we

only need to detect the neighboring tetrahedra of its boundary. The criteria for stopping

is that there are no additional tetrahedra to be added to “OUTSIDER”.

4. The carver algorithm yields tetrahedra of arbitrary topology. Islands should be removed

based on the fact that histology may be of any topology, but its geometric feature is con-

tinuous anywhere. Islands mostly are caused by inevitable noise from original data set.

Figure 3.4-(c)shows the tetrahedral mesh after2 removal steps, with volume presented.

Figure 3.4-(d)shows the initial mesh after islands being removed.

3.5 Volume Reconstruction
To model the histology attribute over the multivariate simplex spline based volume, it is

much more desirable to have a fitting tool which converts the discrete volume data to continu-

ous splines. In this section, we propose a method for volume reconstruction using multivariate

simplex splines.

In this section, we will present an effective framework for the reconstruction of volumetric

data from a sequence of 2D images. The 2D images are first aligned to generate an initial

3D volume, followed by the creation of a tetrahedral domain using the Carver algorithm. The

resulting tetrahedralization preserves both geometry and topology of the original dataset. Then

a solid model is reconstructed using simplex splines with fitting and faring procedures.
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(a) (b)

(c) (d)

Figure 3.4: (a) Point set down-sampled as input of Delaunay tetrahedralization; (b) Arbitrary
Delaunay tetrahedralization with convex hull as its boundary mesh; (c) Carver Algorithm re-
moves outside tetrahedra away from volume; (d) Initial mesh after islands removal.

3.5.1 Hierarchical Simplex Spline Volumes

Before we introduce the hierarchical simplex spline volumes, let us first review some results

on a triangular B-spline.

Theorem (Piecewise polynomial representation)[80] LetF be any piecewise polynomial

of degreen over a given triangulationT , and letFI be the restriction ofF to the triangle∆(I)

andfI be the polar form ofFI . Then the following identity holds for allu:
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F (u) =
∑
I∈T

∑
|β|=n

fI()N
I
β(u). (3.9)

For more information about polar form, we refer the readers to [79, 80].

The above theorem holds for a generals(≥ 2)-variate simplex spline. LetI be the tetra-

hedron of interest in the domain ofs(u), and we want to add more degrees of freedom inI

to model the details. There are two different ways to solve this problem. The first is knot

insertion, in which one knot is inserted into the tetrahedronI, andI is subdivided into four

tetrahedra. Multiple knots can be inserted one by one. The second is hierarchical structures by

building a new splines1
I(u), whose domain is a regularly subdivided tetrahedra ofI. The major

differences between knot insertion and hierarchical structures (seeFigure 4.5) are as follows:

• Hierarchical structures need additional spliness1
I(u), but do not change the original

splines(u), while knot insertion does affect the splines(u).

• Hierarchical structures need special technique to maintain certain continuity between the

original spline and new spline, while knot insertion does not.

• Knot insertion could introduce poor quality tetrahedra, while hierarchical structures do

not.

In order to maintain certain continuity betweens1
u and su, they must have “overlays”.

Unlike the tensor-product B-splines which usually extend the domain one level to maintain

C1-continuity between the two layers, we use the boundary tetrahedra as the overlays, which

means the control points and knots inside these tetrahedra are fixed. The detailed hierarchical

simplices construction is as follows:

1. Subdivide theI to a user-specified level.

2. Compute all the control points in the domainI by Equation 4.21.
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(a) (b)

Figure 3.5: (a) Knot insertion. After one knot is inserted at the barycenter of the original
tetrahedron, the original one is subdivided into four tetrahedra; (b) Hierarchical simplices.
After knots are inserted at the center of the edges of the original tetrahedron, the original one
is subdivided into four tetrahedra.

3. Set all the control points and knots associated to the boundary tetrahedra to be fixed and

others be free.

Note that the refinement (1-3) produces the exact presentation of the original splines. Recall

that movement of a free control pointcJ
β only influences the splines on the tetrahedron∆(J)

and on the tetrahedra directly surrounding∆(J). Since we fix the control points and knots of

the boundary tetrahedra, any change of internal control points will not affect the function value

and gradient across the boundary. Thus, we maintainC1-continuity between the new spline

and original one.

For better understanding, we illustrate the above scheme with an example of triangular B-

spline surface.Figure 3.6-(a)is the original surface and the marked area is the region of interest

to be refined. InFigure 3.6-(b), we construct another triangular B-spline surface that represents

the marked area exactly. This new surface has refined domain triangulation and more control

points. InFigure 3.6-(c), we move a free control point of the new surface and the two surfaces

still blend smoothly. Note that the surfaces inFigure 3.6-(b)andFigure 3.6-(c)use the same

domain.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Illustration of hierarchical bivariate simplex splines surfaces. (a) A bivariate sim-
plex spline surface; (b) Hierarchical structure of one domain triangle of (a); (c) Moving the
free control points will not affect the continuity across the boundary; (d) Corresponding do-
main triangulation of (a); (e) Corresponding domain triangulation of (b); (f) Corresponding
domain triangulation of (c).

3.5.2 Volume Reconstruction Problem Statement

Formally, the problem of volume reconstruction can be stated as follows: given a setP =

{pi}m
i=1 of pointspi = (xi, yi, zi, di) ∈ R4, find a multivariate simplex splines volumes :

R3 → R4 that approximatesP .

Since we are interested only in reconstructing the data from attributes, our multivariate

simplex spline volumes are scalar functions, i.e., the control pointscI
β ∈ R are scalar val-

ues. Unlike the existing fitting algorithms with parametric representations which usually find a

one-to-one mapping between the data points and the points in the parametric space, our method

skips this parameterization procedure. As stated inChapter 3.4, we first construct a tetrahedral-

ization parametric domain which is close to the original geometry of the to-be-fitted dataset.

We use the position(xi, yi, zi) of the data pointpi as its parametric value. Therefore, we need
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to minimize the following objective function:

min E(F ) = Edist(s) + λ · Efair(s), (3.10)

where

Edist(s) =
m∑

i=1

(di − s(xi, yi, zi))
2, (3.11)

andEfair(s) is a fairness function with the smoothing factorλ ≥ 0.

The most commonly-used fairness functions, such as simplified membrane energy and thin-

plate energy, require integration, which is usually computationally intensive. In this section,

we use a simple, yet effective, fairness function:

Efair(s) =
m∑

i=1

(ni · s(xi, yi, zi))
2, (3.12)

whereni is the gradient at point(xi, yi, zi). Note that these gradients can be calculated by local

least-squares fitting toP .

3.5.3 Hierarchical Fitting

The above volume data fitting procedure attempts to minimize the total squared distance of

the volume data pointsdi to the simplex splines(u). For some regions with very dense points

or sharp features, it is often desirable to introduce new degrees of freedom into the spline

representation in order to improve the fitting quality. Hierarchical structures are suitable for

this purpose.

If the error metric inside a tetrahedronI is greater than a user-specified value, and it con-

tains enough points, e.g.,8∗Nmin in our implementation, we construct the hierarchical simplex

spliness(1)
I (u) on I as follows:

1. We shrinkI slightly and get a smaller tetrahedron,J . DenoteI \ J the narrow band

betweenI andJ .
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2. SubdivideJ into 8 tetrahedra.

3. Perform tetrahedralization for the narrow band betweenI andJ .

4. Compute the control points ofs(1)
I (u) by Equation 4.21.

5. Fix the control points and knots associated to the tetrahedra in the bandI \ J and let

others be free.

6. For all the data points insideI, defineei = di − s(xi, yi, zi).

7. SolveEI
dist =

∑
(xi,yi,zi)∈I(ei − s1

I(u))2 with the free control points and knots.

This refinement step is called repeatedly until the stopping criteria is satisfied. Then the

output of our volume reconstruction is a series of multivariate simplex splines, i.e., to evaluate

u ∈ ∆I, we use

s(u) = s0u + s1
I(u) + s2

I(u) + . . .

The number of levels needed in evaluation depends the application.

Although the base domain tetrahedron contains enough points, the number of data points

in some subdivided tetrahedra may be less thanNmin due to the nature of unstructured data.

If this happens, we also fix the control points inside the small tetrahedra to avoid the under-

determined problem.

In order to improve the performance of our fitting method, we start with a down-sampled

dataset in the coarse level and consider the whole dataset in the fine level. For example, when

fitting the rat tooth data, we use64, 572 points in level0 to reconstruct the rough geometry and

density and use350, 000 points in level2 to reconstruct the details.

3.6 Experimental Results
We have implemented a prototype system on a PC with 2.8 GHz P4 CPU and 2GB of RAM.

The system is written in VC++ and VTK 4.2.Table 3.1shows the performance statistics of



www.manaraa.com

38

our fitting algorithm on several datasets, where the fitting error is the root-mean-square error.

With the help of hierarchical simplices, our volume reconstruction algorithm can achieve very

good results. The entire 3D reconstruction procedure from 2D histology sequences takes a few

hours to complete.

Sample Continuous Simplices (Num.) Fitting Error

1 10231 1.878×10−4

2 12855 1.526×10−4

Table 3.1: Statistics of 3D reconstruction.

Through our framework, aseptic loosening at rat apical root can be examined and compared

by quantifying the reconstructed 3D histology data. We also propose a scheme to analyze

the aseptic loosening region of interest by comparing histology data withµCT data. Bone

resorption can be measured along time axis.Figure 3.7shows an example. Because histology

andµCT are different modalities, necessary registration will be acquired before such analysis,

to make the comparison substantial.

3.7 Comparison with Existing Methods
In this section, we will briefly compare our volume reconstruction paradigm with other

volume reconstruction schemes. As there are quite a lot literature on this research topic, I only

choose several of them as the representative ones.

Authors Method Output Continuous

Krinidis et al. [33]
Distance Transform-Based
Global Cost Function

Structure-gridded Volume No

Leeet al. [35]
Sub-Volumes Adjacency
Calculation

Structure-Gridded Volume No

Tanet al. [88]
Feature-Curve Guided
Volume Reconstruction

Structure-Gridded Volume No

Our Method
Multivariate Simplex Spline
Volume Fitting

Parametric Volume Yes

Table 3.2: Comparison of 3D reconstruction schemes.
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(a) (b)

(c) (d)

Figure 3.7: (a) 3D visualization of reconstructed 3D histology volume after similarity map-
ping; (b) 3D visualization of the correspondingµCT volume from the same view point; (c) 3D
visualization of reconstructed 3D histology volume after global faring; (d) 3D visualization of
correspondingµCT volume from the same view point.

As we may see from the table, most of current research on medical volume reconstruc-

tion focuses on the similarity measure of the adjacent slices and the output is a discrete and

structure-gridded volume. On the other end of the spectrum, our unrival reconstruction scheme

based on multivariate simplex spline is a true parametric and continuous method with high-

genus and arbitrary geometry support.
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3.8 Summary
In this chapter, we have articulated a new integral approach for representing, modeling, and

reconstructing volume data. In particular, we employ a hierarchical multivariate simplex spline

model that is defined over a hierarchical and progressive tetrahedralization of arbitrary 3D do-

mains. Our framework supports both structured and unstructured data. The modeled volume

can be of complicated geometry and arbitrary topology. We have developed a new paradigm to

reconstruct non-discrete models from a sequence of 2D images. With the flexible hierarchical

structures, our method can adaptively refine the domain tetrahedralization and introduce more

degrees of freedom locally for better fitting results. The volumes can then be re-modeled and

re-edited by manipulating the control vectors and/or associated knots of multivariate simplex

splines easily. Our results demonstrate that the proposed paradigm augments the current tetra-

hedral representation and reconstruction techniques with new and unique advantages which

can be applied to diverse research areas.
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CHAPTER 4:
NONRIGID VOLUME REGISTRATION WITH
MULTIVARIATE SIMPLEX SPLINE BASED
FREE-FORM DEFORMATION

This chapter presents a novel and efficient computational framework for nonrigid volume

registration using multiresolution volumetric simplex spline-based free-form deformation. In

sharp contrast to existing volume registration algorithms using free-form deformation schemes

based on tensor product B-spline volumes, we employ multiresolution volumetric simplex

spline volume as our underline volume representation to achieve more efficiency, flexibility,

and accuracy. Our framework first applies a rigid affine transformation to the floating vol-

ume to have it roughly aligned to the reference volume. Then the registration is achieved by

searching for the optimum deformation that minimizes a cost function comprising a weighted

combination of volume similarity measure, volume-preserving penalty term and smoothness

penalty term. Our registration scheme can greatly reduce the degree of freedom due to its non-

tensor product nature. With the merit from multiresolution simplices, our paradigm can further

reduce the registration error without introducing unnecessary degree of freedom, which is usu-

ally required by traditional B-spline-based registration schemes. We have successfully applied

our framework to the registration of magnetic resonance imaging (MRI) brain volumes and the

preliminary experimental results demonstrate the powerful potentiality of our framework being

employed to register volumes acquired from intramodality and intermodality imaging systems

in other biomedical applications.

4.1 Introduction and Motivation
Nonrigid registration of intermodality and intramodality images is playing an increasingly

important role both in medical and research realms for the reason many medical activities of-

ten rely on the complementary information retrieved from different images, which are obtained

from intermodality or intramodality imaging system. For instance, computed tomography (CT)
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data affords more precise dose calculation while magnetic resonance imaging (MRI) provides

better performance in tumor outlining. Another case in point is brain disease diagnosis and

surgery. Professionals usually interpret the brain MRI data before the operation. After a pa-

tient’s skull is open, the brain will behave increasing deformation, known as brain shifting,

during ongoing surgical procedures, predominantly due to the gravity and the drainage of cere-

brospinal fluid. This will inevitably lead to the repositioning of the surgical targets embedded in

brain. As a compensation to increase the spatial accuracy of modern neuronavigation systems,

intraoperative magnetic resonance imaging (IMRI) is widely used for quantitative analysis and

visualization of this phenomenon [50]. The output images from MRI and IMRI vary in terms

of image density with different neuronavigation scanning parameters setup. Hence the registra-

tion between these images becomes an indispensable preliminary procedure before any further

diagnosis, description, or surgery.

Current image registration generally includes two procedures: global transformation and

local transformation. The overall motion of the object is described through the global trans-

formation. The simplest, yet broadly adopted way, is a rigid affine transformation [76] para-

meterized by6 degrees of freedom, i.e.,3 degrees of freedom for translation and3 degrees of

freedom for rotation. A more general transformation, which introduces additional6 degrees of

freedom,3 degrees of freedom for scaling and3 degrees of freedom for sheering, may be used

as well. In medical imaging modalities, the scaling information can be obtained through the

parameter setup of the neuro-navigation system, e.g., the detecting spacing of MRI scanning.

There is either no sheering in these imaging modalities. Without loss of generality, we skip the

degrees of freedom introduced by scaling and sheering.

The pure rigid affine transformation models merely take the geometry of the object into ac-

count, i.e., assuming the to-be-registered volumes share the same and uniform intensity, which

is not always the case. As a compensation, in recent years, may voxel-based similarity measure

have yielded increasingly promising results for intermodality registration. Particularly, voxel-
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based similarity measures based on joint entropy [83], mutual information [11, 99, 84], and

normalized mutual information [85, 38] are gaining more and more popularity. Rohlfinget al.

[69] implemented the voxel-based similarity measure in their algorithm independently and suc-

cessfully applied it to their study. Alternatively, Zuoet al. [109] proposed a registration which

minimizes the ratio of variance between images. But the work conducted from those pioneers

will not change the nature of the rigid motion. The rigid affine transformation is the best guess

of the matching between the two volumes without any local transformation involved. Hence it

only serves as the initial estimate for the nonrigid registration.

In the recent decades, researchers proposed all kinds of nonrigid registration algorithms to

better achieve the local transformation. Generally speaking, these algorithms can be broadly

classified into two categories: those based on elastic deformations and those based on spline-

based deformations. The animal model proposed by Collinset al. [12], and the demon model

proposed by Thirion [94], fall into the former category. Their models are based on the as-

sumption that the intensity of tissues remains constant in different modalities, which is not

always true. Edwardset al. [16] modeled 2D deformation of the brain during surgery using

a 3-component model consisting of rigid, elastic, and fluid structures. Hagemannet al. [23]

proposed a 2D nonrigid image registration scheme that aims to model the actual mechanical

properties of the brain tissue. Both methods were originally described in 2D cases, and can be

generalized to 3D counterpart. But the computation cost of their methods is prohibitively high

in 3D cases.

On the other end of the spectrum, Meyeret al. [45] proposed a registration algorithm

based on a thin-plate spline deformation guided by a voxel-based similarity measure using

mutual information. Their algorithm is confined to a limited number of degrees of freedom

because of the prohibitive computational complexity of the thin-plate spline warps. Since

then, B-spline-based free-from deformation using mutual information (or its variance) as the

similarity measure, becomes more and more viable in nonrigid registration schemes [76, 69, 6].
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Later, Wanget al. [100] further proposed a nonrigid registration scheme of brain MRI, which

employs non-uninform rational B-spline (NURBS) as its mathematic foundation instead of B-

splines. However, the nature deficiency of family of tensor product B-spline is that they can

only represent genus-zero object without tedious trimming and patching operation.

In stead, we propose a novel nonrigid volume registration framework using multiresolution

volumetric simplex spline-based free-form deformation to address the above difficulty. Volu-

metric simplex splines, the 3D case of general simplex splines, have many attractive properties

such as piecewise polynomials over general tetrahedral domains, local support, higher-order

smoothness, and positivity, making them potentially ideal in volume representation, visualiza-

tion and analysis [21].

As depicted inFigure 5.1, the pipeline of our framework can be summarized as follows.

We first establish the volumetric simplex spline volume for the floating volume and embed the

floating volume into the control space. In the global transformation part, we first conduct a

rigid affine transformation to the floating volume with the guidance from normalized mutual

information (ENMI), both of which employ the volumetric simplex spline as their mathematic

foundation. In the local deformation part, we further exploit the merits of multiresolution vol-

umetric simplex splines and integrate volume similarity term (ENMI), volume preserving term

(EV olume) and smoothness term (ESmooth) into our framework to achieve more efficiency, flex-

ibility and accuracy. The developed framework is fully automated without human intervention.

Our contributions in this chapter can be summarized as follows

• We develop a unified volume registration scheme which incorporates global transfor-

mation and local deformation into the scheme using multiresolution volumetric simplex

spline-based free-from deformation. With less degree of freedom, our multiresolution

volumetric simplex spline volumes exhibit more local control capability than other ten-

sor product B-splines volumes.

• By applying normalized mutual information, smoothness term, and volume-preserving
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Figure 4.1: Illustration of the pipeline of our nonrigid registration framework. The rectangles
inside the pipeline indicate tasks, and the icons with text under them denote the inputs and
outputs of tasks. The text boxes inside the task denote the cost functions which fulfill the task.

terms into the free-form deformation, our local deformation model is capable of further

minimizing the volume difference between the two volumes and achieving high fidelity.

Our experiments exhibit the efficacy and robustness of our volume-preserving volume

registration scheme.

• We apply the multiresolution simplex spline-based free-form deformation in the brain

volume registration. The experimental results demonstrate the efficacy and accuracy of

our nonrigid volume registration paradigm. Although we mainly focus on brain MRI

volumes registration in this study, our method can be generally applied to other inter-

modality and intramodality volumes registration.

4.2 Previous Work
This chapter is related to the theory and application of volumetric simplex splines, and

free-from deformation. And the application we focus in this study is brain volume registration.

This section reviews the related, previous work in these fields which are not presented in the

introduction part.
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4.2.1 Volumetric Simplex Splines

Multivariate simplex splines were first presented by Boor [14]. In essence, multivariate

simplex splines are the volumetric projection of higher dimensional simplices onto a lower

dimensional spaceRm. From the point of view of blossoming, Dahmenet al. [13] proposed

triangular B-splines. Later, Greiner and Seidel [21] demonstrated their practical feasibility

in graphics and shape design. Pfeifle and Seidel developed a faster evaluation technique for

quadratic bivariate DMS-spline surfaces [59] and applied it to the scattered data fitting of tri-

angular B-spline [61]. Hua and Qin presented a volumetric sculpting framework that employs

trivariate scalar nonuniform B-splines as underlying representation [27, 29]. More recently,

they applied trivariate simplex splines to the representation of solid geometry, the modeling

of heterogeneous material attributes, and the reconstruction of continuous volumetric splines

from discretized volumetric inputs via data fitting [25, 26]. Tanet al. applied the hierarchical

simplex splines to volume reconstruction from planar images [87]. Later they proposed dy-

namic spherical volumetric simplex splines and successfully applied the volume representation

scheme to brain biomedical behavior simulation [89].

4.2.2 Brain Volume Registration

On the application front, in recent years, tremendous efforts from biomedical research com-

munities have been devoted into the brain volume registration since accurate registration of

brain can have many potential applications, e.g., computer-aided surgical planning/surgery,

computer-assisted disease/injury positioning, accurate radiation therapy, and many other med-

ical benefits. We only review several of them in the interest of space. In [84], Studholmeet

al. demonstrated the efficacy of measures of voxel intensity similarity in automatic registration

of brain volumes derived from magnetic resonance imaging and positron emission tomogra-

phy (PET). Liuet al. presented the method which employs mutual information matrix for

high-dimensional mutual information registration of intermodality brain volumes [37]. Myers

summarized the application of PET-MR brain volume registration [49].
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4.3 Volumetric Simplex Splines
First, let us review some content of the volumetric simplex splines, the mathematic model

deployed in our free-form based nonrigid registration.

A degreen volumetric simplex spline,M(x|x0, · · · ,xn+3), can be defined as a function of

x ∈ R3 over the half open convex hull of a point setV = [x0, · · · ,xn+3), depending on the

n + 4 knotsxi ∈ R3, i = 0, · · · , n + 3. The volumetric simplex splines may be formulated

recursively. Whenn = 0,

M(x|x0, · · · ,x3) =


1

|VolR3 (x0,··· ,x3)| , x ∈ [x0, · · · ,x3),

0, otherwise,

and whenn > 0, select four pointsW = {xk0 ,xk1 ,xk2 ,xk3} from V, such thatW is affinely

independent, then

M(x|x0, · · · ,xn+3) =
3∑

j=0

λj(x|W)M(x|V \ {xkj
}), (4.1)

where
∑3

j=0 λj(x|W) = 1 and
∑3

j=0 λj(x|W)xkj
= x.

The directional derivative ofM(x|V) with respect to a vectord is defined as follows

DdM(x|V) = n

3∑
j=0

µj(d|W)M(x|V \ {xkj
}), (4.2)

whered =
∑3

j=0 µj(d|W)xkj
and

∑3
j=0 µj(d|W) = 0.

The basis functions of normalized volumetric simplex splines are then defined as

N I
β(u) = | det(pi,qj, rk, sl)|M(u|V I

β ), (4.3)

where theβ denotes the traverse of 4-tuple(i, j, k, l), i + j + k + l = n, andI denotes one

tetrahedron in domainT.
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The simplex spline volume is the combination of a set of basis functions with control points

cI
β

s(u) =
∑
I∈T

∑
|β|=n

cI
βN I

β(u). (4.4)

Figure 4.2-(a)shows a cubic volumetric simplex spline domain which is naturally an icosa-

hedron.Figure 4.2-(b)exhibits the corresponding volumetric simplex spline solid.

(a) (b)

Figure 4.2: (a) A cubic volumetric simplex spline domain with knots associated; (b) The con-
trol solid defined over (a). The tetrahedra of the control solid are scaled in order to emphasize
its non-empty solid interior geometry.

In the interest of space, readers may refer to [25] [89] for a complete description of volu-

metric simplex splines.

4.4 Embedding Space Initialization
As we stated in the introduction part, we first embed the floating volume into the embedding

space, i.e., the control space associated to the volumetric simplex spline volume. In this sec-

tion, we articulate the preparatory step before the registration step: domain and control space

initialization.
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4.4.1 Simplex Spline Initialization

We employ the method described in [89] to create the spherical volumetric simplex domain.

Admittedly, we can choose any canonic shape as the domain. We prefer sphere domain since

the human brain is topologically equivalent to a sphere and the tetrahedralization of a sphere

domain is more uniform than any other genus-zero primitives such as cube and cylinder. In

practice, we find that a cubic simplex spline with domain derived from the icosahedron suf-

fices our registration purpose.Figure 4.2 illustrates the domain and initial control space we

employed in our framework.

4.4.2 Floating Volume Embedding

The control solid illustrated inFigure 4.2-(b)serves as the embedding space. In order to

achieve better performance from the framework, however, we need to take the following two

requirements into account in practice.

1. The embedding space should be have an uniform mesh configuration at the initialization.

A uniform embedding space can tremendously reduce the computational time and in-

creasing the registration efficiency. While multiresolution structure is needed to further

decrease the registration error, uniform mesh configuration of the embedding space will

exhibit its great potentiality.

2. The embedding space should completely contain the the floating volume. When the

boundary of the control net is convex, the control space of simplex spline volume should

be within the control net, i.e., the control space should never reach the control net. Corre-

spondingly, the embedded objects should be within the control space completely.Figure

4.3-(a)illustrates the 2D case of this phenomenon.

Observing all the above-mentioned aspects,Figure 4.3-(b)illustrates the final control space

with the floating brain volume embedded. Note that the brain is within the boundary of the

control space, which is demonstrated as the scaled solid inFigure 4.2-(b).
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(a) (b)

Figure 4.3: (a) The relationship among the control net, the control space and the embedded
objects. The dotted line of the blue rectangle denotes the boundary of a control net, the green
rounded-corner rectangle denotes the control space with three yellow objects embedded; (b)
The embedding space with the floating brain volume embedded. In the figure, the blue tetrahe-
dra mesh denotes the control net while the green dots denote the control points.

4.5 Volume Registration Problem Statement
The objective of volume registration of two volumes,A andB (without loss of generality,

say, we registerA to B), is to find the optimal transformation:T : (x, y, z) 7→ (x′, y′, z′) which

maps the point(x, y, z) in volumeA to (x′, y′, z′) in volumeB. In general, the motion of the

floating volume is distinct so that rigid affine transformation is not sufficient for the purpose.

As we employ volumetric simplex spline as the volume representation scheme, now the floating

volume is expressed as

s(u, c) =
∑
I∈T

∑
|β|=n

cI
βN I

β(u), (4.5)

where we put thec into the parameter position of functions, to emphasize the volumetric

simplex spline volumes is now not only the function ofu, but the function ofc. Hence we

can rewrite the objective function in the following way. LetsA = s(u, cA) be the floating

volumeA wherecA is the control points of the control net of the volumetric simplex spline

volume, andsB be the reference volumeB in the same manner, now the objective of volume

registration is to find the optimal transformation:T : cA 7→ cA′ wheres(u, cA′) andsB have



www.manaraa.com

51

the most correlation.

4.6 Global Transformation Model
Global transformation aims at providing the rough alignment betweensA andsB since non-

rigid volume registration schemes requires the rough shape of the two to-be-registered volumes,

i.e, large deformation between the two volumes will fail the volume registration algorithm us-

ing local free-from deformation method. As we illustrated in the introduction part, here we em-

ploy the rigid affine transformation to achieve the global deformation. The objective function

is to maximize the normalized mutual information betweenR(s(u, cA)) andsB, whereR is

the rigid affine transformation. Note that we take the advantage ofR(s(u, cA)) = s(u, R(cA))

from the property of volumetric simplex spline.

4.7 Local Deformation Model
The globe deformation only describes the global motion of the floating brain volume, and

it only yields the rough shape of fromsA to sB. Hence a local deformation, which models the

local deformation of the floating brain, is required. Here we employ an free-from deformation

model based on volumetric simplex splines, to achieve the local deformation. Here the basic

idea of local deformation, is to embed the to-be-deformed volume into the embedding space,

and then to deform the brain by maneuvering an underlying mesh of control points. Please

refer toChapter 4.4.2for the detailed embedding techniques. More details of local deformation

model will be given inChapter 4.7.1.

4.7.1 Volume-Preserving Local Deformation

Our local deformation algorithm employs NMI similarity measureENMI , volume preserv-

ing penalty termEV olume, and smoothness penalty termESmooth to constrain the local defor-

mation within the embedding space. The registration cost function is as follows

Etotal = aENMI − bEV olume − cESmooth, (4.6)
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wherea, b and c are user-specified coefficients controlling the relative influence ofENMI ,

EV olume andESmooth, respectively. The signs,+ and− before each term denote that during

the local deformation, we want to maximize the similarity measureENMI , and minimize two

penaltiesEV olume andESmooth. We will explain later in this section why each term bears the

sign+ or−.

4.7.2 Normalized Mutual Information Measure

To measure the degree of alignment between the reference volume and the floating volume,

one preliminary step is to define a similarity criterion. One of the widely-used voxel-based

similarity measures is the sum of squared difference (SSD). Yet same part of human body

may have different image intensities in different imaging modalities, which makes SSD insuf-

ficient in intermodality volume registration. Alternatively, we employ mutual information (MI)

[11, 99] in our framework, which has been shown to align volumes from different modalities

accurately and robustly.

MI, denoted byI(sA, sB), is the measurement of the degree of dependence between two

volumes,sA andsB, respectively. It is measured through the distance between the joint distri-

bution and the the distribution associated to the case of complete independence, by means of

Kullback-Leibler measure [98] as follows

I(sA, sB) = H(sA) + H(sB)−H(sA, sB), (4.7)

whereH(sA) andH(sB) denote the marginal entropies ofsA andsB respectively, andH(sA, sB)

denotes their joint entropy. Those entropy quantities can be calculated as follows

H(sA) = −
∑

a

psA(a) lg psA(a), (4.8)

H(sA, sB) = −
∑
a,b

psA,sB(a, b) lg psA,sB(a, b), (4.9)
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wherepsA(a) indicates the marginal probability distribution ofsA andpsA,sB(a, b) indicates

the joint probability distribution ofsA andsB.

If the two volumes are registered,I(sA, sB) reaches its maximal. Studholme [85] has

shown thatI(sA, sB) is dependant on the overlap between the two volumes. To avoid any

dependency on the amount of image overlap, in our framework, we will employ normalized

mutual information (NMI) [85] as the measurement of the degree of volume registration as

follows

ENMI =
H(sA) + H(sB)

H(sA, sB)
. (4.10)

Similarly here, if the two volumes are registered,ENMI reaches its maximal. Hence in

Equation 4.6ENMI has the positive sign. Similar forms of normalized mutual information

have been proposed by Maeset al. [38].

4.7.3 Volume-Preserving Term

The volume-preserving constraint is based on the biomedical observation that many tissues

in the human body, for instance, the human brain, are approximately incompressible for small

deformations and short time periods.

The volume-preserving term is purely geometry related. As stated inChapter 4.3, the

dimension ofs is the same as the generalized control pointcI
β. For the simplicity of the formula

expression, lets = (sx, sy, sz) to emphasize the pure geometry extracted froms, where the

subscript denotes the component. In a small neighborhood of the point(x, y, z), which has

the parametric valueu, the local compression caused by the deformation can be calculated in

terms of the Jacobian determinant as follows

J(u) = det


∂sx(u)

∂x
∂sx(u)

∂y
∂sx(u)

∂z

∂sy(u)

∂x

∂sy(u)

∂y

∂sy(u)

∂z

∂sz(u)
∂x

∂sz(u)
∂y

∂sz(u)
∂z

 . (4.11)
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The valueJ(u) equals to1.0 if the deformation atu is volume-preserving, greater than1.0

if there is local expansion, and less than1.0 if their is local compression.

Now according to the directional derivative ofM(x|V) with respect to a vectord defined

in Equation 4.2, the directional derivative of the basis functions of normalized simplex splines

with respect to a vectord is defined as

DdN I
β(u) = | det(pi,qj, rk, sl)|DdM(u|V I

β ). (4.12)

In the interest of space, readers may refer toEquation 4.3for the details of each term in

this equation. Similarly, the directional derivative of a simplex spline volume of degreen is

defined as

Dds(u) =
∑
I∈T

∑
|β|=n

cI
βDdN I

β(u). (4.13)

Now the Jacobian determinant can be computed as

J(u) = det


D(1,0,0)s(u)

D(0,1,0)s(u)

D(0,0,1)s(u)

 . (4.14)

Then incompressibility constraint term is defined as the integral of the absolute logarithm

of the Jacobian determinant, integrated over the domainΩ

EV olume =

∫
Ω

| log(J(u))|du. (4.15)

From the above equation, we observe thatEV olume is non-negative. If there is no local

volume variation andEV olume reaches its minimal, 0. Hence inEquation 4.6EV olume has the

negative sign.
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4.7.4 Smoothness Term

We further constrain the deformation to be smooth by adding another penalty term, thin

plate spline-based bending energy [4]. In our scheme, this penalty quantity is the 3D coun-

terpart of the 2D one. Here the penalty term is composed of second-order derivatives of the

deformation as follows

ESmooth =

∫
Ω

(
∂2sx

∂x2
) + (

∂2sy

∂y2
) + (

∂2sz

∂z2
)+

2× [(
∂sx∂sy

∂x∂y
)2 + (

∂sy∂sz

∂y∂z
)2 + (

∂sz∂sx

∂z∂x
)2]du. (4.16)

Similar to the volume-preserving term, the smoothness term is also purely geometry related.

According the recurrence relation of basis functionM , along with its derivation rule [46] of

the high order derivative, the second order derivative ofM(x|V) with respect to a vectord is

defined as follows

D2
dM(x|V) = n

3∑
j=0

µj(d|W)DdM(x|V \ {xkj
}), (4.17)

wherex =
∑3

j=0 µj(d|W)xkj
and

∑3
j=0 µj(d|W) = 0. Now the second order derivative of

the basis functions of normalized simplex splines with respect to a vectord is defined as

D2
dN I

β(u) = | det(pi,qj, rk, sl)|D2
dM(u|V I

β ). (4.18)

Similarly, the second order derivative of a simplex spline volume of degreen is defined as

D2
ds(u) =

∑
I∈T

∑
|β|=n

cI
βD2

dN I
β(u). (4.19)

Now the second-order derivative of the deformation can be easily computed as, e.g.,
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∂2sx

∂x2
=

[
D(1,0,0)(D(1,0,0)s(u))

]
x
. (4.20)

Other entries inEquation 4.16can be computed in the same manner.

Note that the penalty term is zero for any affine transformations and it only penalize non-

affine transformations. Hence inEquation 4.6ESmooth has the negative sign.

4.8 Multiresolution Volumetric Simplex Splines
For some regions with very large deformations, it is often desirable to introduce extra de-

grees of freedom into the spline representation in order to improve the registration quality.

However, current tensor product B-spline representations will introduce more unnecessary de-

gree of freedom. The 2D case of this limit is shown inFigure 4.4-(a). In sharp contrast to

it, multiresolution volumetric simplex splines are more suitable for this purpose because of its

non-tensor product nature and true local support property. The 2D case of this merit is depicted

in Figure 4.4-(b).

(a) (b)

Figure 4.4: (a) Multiresolution tensor product B-splines. While increasing the resolution of
region of interest, other regions are affected because of its tensor product nature; (b) Multires-
olution simplices. True local support can be steadily achieved because of its non-tensor product
nature.
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Before we introduce the multiresolution volumetric simplex splines, let us first review some

results on a triangular B-spline.

Theorem (Piecewise polynomial representation)[80] LetF be any piecewise polynomial

of degreen over a given triangulationT , and letFI be the restriction ofF to the triangle∆(I)

andfI be the polar form ofFI . Then the following identity holds for allu

F (u) =
∑
I∈T

∑
|β|=n

fI()N
I
β(u). (4.21)

For more information about polar form, we refer the readers to [79, 80].

The above theorem holds for a generals(≥ 2)-variate simplex spline. LetI be the tetra-

hedron of interest in the domain ofs(u), and we want to add more degrees of freedom inI to

model the large deformation. There are two different ways to solve this problem. The first is

knot insertion, in which one knot is inserted into the tetrahedronI, andI is subdivided into four

tetrahedra. Multiple knots can be inserted one by one. The second is multiresolution structure,

whose domain is a regularly subdivided tetrahedra ofI. The major differences between knot

insertion and multiresolution structures (seeFigure 4.5) are as follows

• Multiresolution structures do not change the original splines(u), while knot insertion

does affect the splines(u).

• Multiresolution structures need special technique to maintain certain continuity between

the original spline and new spline, while knot insertion does not.

• Multiresolution structures would not introduce poor quality tetrahedra, while knot inser-

tion does so inevitably, which should be avoided in the implementation.

If the registration error metric, i.e., the difference of NMI inside a tetrahedronI is greater

than a user-specified value, we construct the multiresolution volumetric simplex spline as fol-

lows
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(a) (b)

Figure 4.5: (a) Knot insertion. After one knot is inserted at the barycenter of the original
tetrahedron, the original one is subdivided into four tetrahedra; (b) Multiresolution simplices.
After knots are inserted at the center of the edges of the original tetrahedron, the original one
is subdivided into eight tetrahedra.

1. Subdivide theI into eight tetrahedra, as shown inFigure 4.5-(b).

2. Assign sub-knots to the newly inserted primary knots, according the rule of domain

validity [25].

3. Subdivide the each direct neighbor tetrahedron into four tetrahedra, as shown inFigure

4.4-(b).

4. Compute the initial position of control points by subdividing the control net into a second

level.

As the tetrahedralization of the multiresolutional ofI will not affect the original spline, we

maintainCn−1-continuity between the newly added tetrahedra and original ones.
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4.9 Experimental Results
We implemented the framework on a Dell XPS4700 desktop with Quad Cores 2.84GHz

CPU and 4GB RAM. The system is written in VC++ and VTK 4.6. In our intensive ex-

periments, we discovered that the second level multiresolution volumetric simplex spline can

achieve better registration accuracy than a the first level configuration. The configuration of

the multiresolution volumetric simplex spline and embedding space is depicted inTable 4.1.

As we can see from the table, from first-level to second-level, the number of control points is

increasedly correspondingly. Hence more degrees of freedom will be introduced to the system,

which is more capable of registering volumes with large deformation.

First-level Configuration
# of Tetrahedra # of Knots # of Control Points

Quadratic 20 39 55
Cubic 20 52 147

Second-level Configuration
# of Tetrahedra # of Knots # of Control Points

Quadratic 160 165 309
Cubic 160 220 903

Table 4.1: Statistics of multiresolution volumetric simplex spline domain and control space
configuration.

To measure the performance of our proposed algorithm, we also compared the registration

quality obtained using our multiresolution volumetric simplex spline-based free-form deforma-

tion (MVSS-FFD) and the existing registration algorithm using tensor product B-spline-based

free-form deformation (TPBS-FFD) [69], respectively. A comparison of the runtime was also

performed between our MVSS-FFD method and existing TPBS-FFD method. Detailed exper-

imental results will be presented in the following sections.

4.9.1 Experiments on Simulated Brain Volumes

We conducted experiments on several intramodality brain volumes registration. Due to the

difficulty to produce known nonrigid motion fields in the tissues of brain, we created several
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deformed volumes by applying the brain modeling and simulation techniques with dynamic

spherical volumetric simplex splines [89]. We prefer such techniques for two reasons. First,

the mathematic foundation of the simulation scheme is also the volumetric simplex spline vol-

ume, the same with our volume registration paradigm; Second, the simulated brain volume is

validated with the ground true. The simulated brain volumes have been chosen as the refer-

ences images respectively.

Figure 4.6illustrates one case study in which the subject is lying on his/her left side. We

also conduct the comparison with the results obtained from tensor product B-spline-based free-

form deformation. In order to better visualize the deformation field of the volumes, one axial

cross section view of each volume was presented.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: One case study. (a) The reference brain volume; (b) The floating volume to be
registered to (a); (c) The registered volume using our MVSS-FFD method; (d) The image
difference between (a) and (c); (e) The control space before registration; (f) The control space
after registration; (g) The registered volume using existing TPBS-FFD method; (h) The image
difference between (a) and (g).

Figure 4.7illustrates another case study in which the subject is lying on his/her right side.

Note that, inFigure 4.6andFigure 4.7, since the floating and reference volumes are all

acquired from the same imaging modality, MRI, the misregistration can be directly presented
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Another case study. (a) The reference brain volume; (b) The floating volume to
be registered to (a); (c) The registered volume using our MVSS-FFD method; (d) The image
difference between (a) and (c); (e) The control space before registration; (f) The control space
after registration; (g) The registered volume using existing TPBS-FFD method; (h) The image
difference between (a) and (g).

as the image difference between the two volumes. The results shows that our MVSS-FFD

paradigm can achieve better outcome than TPBS-FFD method.

4.9.2 Comparison with Existing Algorithms

As theEquation 4.6has no analytic solution, we employ gradient descent method [82] to

solve it. Average runtime between our MVSS-FFD registration for one paired volumes is 38

minutes, while existing TPBS-FFD method needs 1 hour and 36 minutes to accomplish the

job. The improvement is greatly attributed to the non-tensor, truly local support properties of

volumetric simplex splines, thus less degree of freedom is involved in the system. Detailed

comparison is list inTable 4.2. The comparison between the runtime consumed by our MVSS-

FFD method and existing TPBS-FFD method, demonstrates that our paradigm is more efficient.

Quantitative measure of the registration results between our MVSS-FFD method and TPBS-

FFD method are listed in Table 4.3.
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MVSS-FFD TPBS-FFD

Embedding Space MVSS Control Space 123 Uniform Grid
# of Control Points 903 1728
Degree of Freedom 2709 5184
Runtime (hh:mm) 00:38 01:36

Table 4.2: Statistics of runtime comparison between the registration approaches using our
multiresolution volumetric simplex spline-based free-form deformation and regular free-from
deformation using tensor product B-spline scheme. Note that the degree of the domain is cubic
in both cases.

Patient NMI before NMI from NMI from Registration
ID Simulation TPBS-FFD MVSS-FFD Enhancement

A 1.865863 1.840674 1.856525 0.015851
B 1.959156 1.925738 1.945176 0.019438
C 1.920168 1.884962 1.913941 0.028979
D 1.881957 1.853549 1.862940 0.009391
E 1.844318 1.803465 1.834528 0.031063
F 1.936534 1.909266 1.920119 0.010853

Table 4.3: Statistics of registration results using our MVSS-FFD method with comparison to
TPBS-FFD method. The registration quality is evaluated using the normalized mutual infor-
mation between the resulting floating brain volume and the reference brain volume.

4.10 Comparison with Existing Methods
In this section, we will briefly compare our volume registration paradigm with other volume

registration schemes. As there are quite a lot literature on this research topic, I only choose

several of them as the representative ones.

Authors Method Nonrigid High-Genus Support

Studholmeet al. [84] Voxel Intensity Similarity No Not Applicable

Rueckertet al. [76]
B-Spline Based Free-Form
Deformation

Yes Trimming and Patching

Wanget al. [100]
NURBS Based Free-Form
Deformation

Yes Trimming and Patching

Our Method
Multivariate Simplex Spline
Based Free-Form Deformation

Yes Naturally Supportive

Table 4.4: Comparison of volume registration schemes.
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As we may see from the table, similarity measure is inadequate for volume registration

although it is frequently employed as part of the solution. Most of current research on volume

registration is based on free-form deformation. Although B-spline is widely used in this re-

search domain, it is computational inefficient to register high-genus models because of its ten-

sor product nature. On the other end of the spectrum, our unrival volume registration scheme

is based on multivariate simplex spline which is a true non-tensor product method with natural

high-genus support.

4.11 Summary
In this chapter, a novel nonrigid volume registration paradigm using multiresolution volu-

metric simplex spline-based free-form deformation has been proposed. Although volumetric

simplex has already been a powerful tool in both engineering and medical research realm, it

has never been applied to the intramodality or intermodality nonrigid volume registration. Our

approach first embeds the floating volume into the control space associated with its volumet-

ric simplex spline. With the guidance of normalized mutual information between the floating

and reference volume, a rigid affine transformation is applied to the control points of the con-

trol space, to obtain an initial rigid alignment. After that, a local, nonrigid, multiresolution

volumetric simplex spline-based free-form deformation is applied to the floating volume. We

introduce volume similarity term, volume preserving term and smoothness term to our frame-

work to achieve better registration result. Multiresolution simplices greatly reduce the degree

of the freedom of the system, increase the registration quality and shorten the computational

time. The experimental results have demonstrated the excellent performance of our technique,

which can be effectively employed to brain volume registration as well as other intramodality

and intermodality medical imaging registration.
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CHAPTER 5:
PHYSICALLY BASED MODELING AND SIMULATION
WITH DYNAMIC SPHERICAL MULTIVARIATE
SIMPLEX SPLINES

In this chapter, we present a novel computational modeling and simulation framework

based on dynamic spherical multivariate simplex splines (DSMSS). The framework can handle

the modeling and simulation of genus-zero objects with real physical properties. In this frame-

work, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital

model of a real-world object with spherical multivariate simplex splines which can represent

with accuracy geometric, material, and other properties of the object simultaneously. With the

tight coupling of Lagrangian mechanics, the dynamic multivariate simplex splines representing

the object can accurately simulate its physical behavior because it can unify the geometric and

material properties in the simulation. The visualization can be directly computed from the ob-

ject’s geometric or physical representation based on the dynamic spherical multivariate simplex

splines during simulation without interpolation or resampling. We have applied the framework

for biomechanic simulation of brain deformations, such as brain shifting during the surgery

and brain injury under blunt impact. We have compared our simulation results with the ground

truth obtained through intra-operative magnetic resonance imaging and the real biomechanic

experiments. The evaluations demonstrate the excellent performance of our new technique.

5.1 Introduction and Motivation
Modeling, simulation and assessment of digital representations of heterogeneous objects

acquired from real-world are very challenging research tasks and have many potential appli-

cations. The fundamental objectives are to unambiguously model high-dimensional heteroge-

neous objects, accurately and effectively simulate their behaviors, and rigorously analyze their

dynamic natures. Among many important aspects of physically based modeling and simula-

tion, the accuracy is of utmost importance since only physically realistic simulation can be
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used to represent the true reality and provide valuable information for the simulation-based

assessment and analysis. In existing approaches, several different representations are typi-

cally required throughout the simulation of real-world models in computerized environments.

That is to say, each stage within the entire physical simulation pipeline, including modeling

(e.g., meshing, material modeling), simulation, analysis, visualization, typically takes as input

a different representation of the modeled object, which requires costly and error-prone data

conversions throughout the entire simulation process. It will certainly introduce error into the

pipeline. For instance, in order to simulate the brain deformation, a linear solid mesh needs

to be generated for finite element methods (FEMs) from the voxel-based representation of the

brain representing the geometry of the brain (which has a highly convoluted cortical surface

and many subtle sub-cortical structures). Then, manual material editing needs to be conducted

to assign material properties to solid meshes. The FEM properties are linearly interpolated

during simulation and resampled once again to voxels’ intensities for visualization. Certainly,

conversions among volumetric datasets, solid meshes, finite elements, and voxels based on lin-

ear interpolation or resampling will introduce error. In addition, more errors will be brought

into the pipeline as the constructed linear solid mesh may not well represent both geometry

and material distribution simultaneously. The geometric, physical, and mechanical properties

are not tightly integrated into the simulation. As a result, the current practice impedes the ac-

curate modeling and simulation of digital models of real-world objects. With ever-improving

computing power comes the strong demand for more accurate, robust, and powerful solid mod-

eling and simulation paradigms that are efficacious for the modeling, simulation, analysis, and

visualization of digital models of real-world objects.

In order to bridge the gap and overcome the aforementioned deficiencies, we develop an

integrated computational framework based on dynamic spherical volumetric simplex splines

(DSVSS) that can greatly improve the accuracy and efficacy of modeling and simulation of

heterogenous objects since the framework can not only reconstruct with high accuracy geo-
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metric, material, and other quantities associated with heterogeneous real-world models, but

also simulate the complicated dynamics precisely by tightly coupling these physical properties

into simulation. The integration of geometric modeling, material modeling, and simulation is

the key to the success of simulation of real-world objects. In contrast to existing techniques,

our framework uses a single representation that requires no data conversion. The advantages

of our framework result from many attractive properties of multivariate splines. In compar-

ison with tensor-product NURBS, multivariate simplex splines are non-tensor-product in na-

ture. They are essentially piecewise polynomials of the lowest possible degree and the highest

possible continuity everywhere across their entire tetrahedral domain. For example, given an

object of simplex splines with degreen, it can achieveCn−1 continuity. Furthermore,C0, other

varying continuities, and even discontinuity can be accommodated through different knot and

control point placements and/or different arrangements of domain tetrahedra in 3D. Further-

more, simplex splines are ideal to represent heterogeneous material distributions through the

tight coupling of control points and their attributes. From dynamic simulation’s point of view,

they are finite elements which can be directly brought into finite element formulations and

physics-based analysis without losing any information. Finite elements can be derived directly

from the simplex spline representation, which can also be visualized via volumetric ray-casting

without discretization [25]. Trivariate simplex splines are obtained through the projection of

n-dimensional simplices onto 3D. Projecting them one step further onto 2D for visualization

results in bivariate simplex splines of one degree higher than the original solid model, therefore,

simplex splines facilitate the visualization task with an analytical, closed-form formulation. It

is not necessary to perform any resampling and/or interpolation operations. Local adaptivity

and local/global subdivision via knot insertion can be readily achieved.

On the application front, in recent years, tremendous efforts from biomedical research com-

munities have been devoted into the brain simulation since accurate simulation of brain defor-

mations can have many potential applications, e.g., computer-aided surgical planning/surgery,
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computer-assisted disease/injury positioning, accurate radiation therapy, and many other med-

ical benefits [39]. Various methods are emerging for simulation of the brains in different phys-

ical environments. However, most brain volume simulation techniques still depend on linear

geometric representation and FEMs as we have already described above. No advanced com-

putational models are available for better simulation. As we all know, the brain is a highly

convoluted organ rich of geometric, anatomical, and material variations. In order to obtain

realistic deformation simulation of the brain, it is very important to construct a digital model

which can simultaneously represent its geometry, imaging intensities, and material properties,

and then integrate the properties into the biomechanic simulation. Consider that the human

brain is topologically equivalent to a solid sphere, our proposed dynamic spherical volumet-

ric simplex splines are perfect for modeling, simulation, and analysis of such an object. The

spherical volumetric simplex splines are defined over a solid spherical tetrahedralization. In

this chapter, we apply and evaluate our simulation framework on various human brain defor-

mations.

As depicted inFigure 5.1, the developed framework is fully automated without human in-

tervention. The spherical domain is constructed from the subdivision of an icosahedron and

harmonic volumetric mapping. With spherical domain and harmonic volume parameteriza-

tion, the continuous volumetric representation of the modeled object is obtained through fitting

spherical volumetric simplex splines to the real-world volume data. Physical properties can

then be integrated into the system to unify the geometric representation as well as the physical

representation. With Lagrangian dynamics essentials integrated into the pipeline, the powerful

framework yields the dynamic representation of the digital model. The dynamic representa-

tion of the digital model can facilitate multiple tasks such as model assessment, biomechanic

simulation, and visualization.

Our contributions in this chapter can be summarized as follows:

• We develop a physical simulation framework which seamlessly integrates geometric
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Figure 5.1: Illustration of the pipeline of our DSVSS framework. The rectangles inside the
pipeline indicate tasks, and the icons with text under them denote the inputs and outputs of
tasks.

properties, physical properties, and dynamic behaviors together. The consistent, uni-

form representation throughout each stage of modeling and simulation is a single degree

n spherical volumetric simplex spline. It is ideal for simulating complex, heterogenous
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real-world objects.

• The heterogenous model reconstructed from the digitalization of a real-world object is

faithful and of high-fidelity in terms of its geometry and material distribution. The model

reconstruction procedure is automatic, and the maximal fitting error to the original data

can be controlled by user’s specification interactively.

• During the simulation, the geometry and physical properties of the volumetric model can

be computed using the analytic representation without any need for numerical approxi-

mations such as cubic interpolation or quadratic resampling. Hence, physical simulation,

including all downstream processes, such as analysis and evaluation, can be achieved

more accurately and robustly.

• We apply the dynamic spherical simplex splines scheme in the simulation and analysis

of brain models. The unified scheme can achieve very accurate simulation compared

with the ground-truth results because it can tightly integrate the geometric and material

properties in the simulation. Our framework has great potential to provide simulation-

based assessment for innovative computer-aided diagnosis of brain injury cases.

5.1.1 Previous Work

This section reviews the previous work related to the theory and application of multivariate

simplex splines and physically based modeling and simulation. In particular, we provide the

brief background regarding the brain simulation and its potential applications.

Multivariate Simplex Splines

From projection’s point of view, univariate B-splines can be intuitively formulated as vol-

umetric shadows of higher dimensional simplices, i.e., we can obtain B-splines of arbitrary

degreen by taking a simplex in the(n + 1)-dimensional space and volumetrically projecting

it ontoR1. Motivated by this idea of Curry and Schoenberg, C. de Boor [14] presented a brief

description of multivariate simplex splines. In essence, multivariate simplex splines are the
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volumetric projection of higher dimensional simplices onto a lower dimensional spaceRm.

Simplex splines have many attractive properties such as piecewise polynomials over general

tetrahedral domains, local support, higher-order smoothness, and positivity, making them po-

tentially ideal in engineering design applications [21]. From the point of view of blossoming,

Dahmenet al. [13] proposed triangular B-splines. Later, Greiner and Seidel [21] demonstrated

their practical feasibility in graphics and shape design.

In contrast to theoretical advances, the application of simplex splines has been rather under-

explored. Pfeifle and Seidel developed a faster evaluation technique for quadratic bivariate

DMS-spline surfaces [59] and applied it to the scattered data fitting of triangular B-spline [61].

Recently, R̈osslet al. [56] presented a novel approach to reconstruct volume from structure-

gridded samples using trivariate quadric super splines defined on a uniform tetrahedral parti-

tion. They used Bernstein-Bézier techniques to compute and evaluate the trivariate spline and

its gradient. Hua and Qin presented a volumetric sculpting framework that employs trivari-

ate scalar nonuniform B-splines as underlying representation [27, 29]. More recently, they

applied trivariate simplex splines to the representation of solid geometry, the modeling of het-

erogeneous material attributes, and the reconstruction of continuous volumetric splines from

discretized volumetric inputs via data fitting [26]. Tanet al. applied the hierarchical simplex

splines to volume reconstruction from planar images [87].

Physically Based Modeling and Biomechanic Simulation

Free-form deformable models were first introduced to the modeling community by Ter-

zopouloset al. [91], and they have been improved by a number of researchers over the past 20

years. Celniker and Gossard developed an interesting prototype system [4] for interactive free-

form design based on the finite-element optimization of energy functionals proposed in [91].

Bloor and Wilson developed related models using similar energies and numerical optimization

[2]. Welch and Witkin extended the approach to trimmed hierarchical B-splines for interactive

modeling of free-form surfaces with constrained variational optimization [104]. Terzopoulos
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and Qin [93, 65] devised dynamic physically based generalization of NURBS (D-NURBS).

Later, they further developed dynamic triangular B-splines [64] paradigm for high topology

surface modeling. The new paradigm on simplex spline finite elements is substantially more

sophisticated and is expected to produce even more true-to-life simulation results.

As for simulation of digital models of real-world objects, researchers have focused on FEM

meshing, which can represent the shape of the objects, and physical laws and properties, which

govern the model’s behavior. Zhanget al. presented a method for 3D mesh generation from

imaging data [108]. They further designed an algorithm for automatic 3D mesh generation

for a domain with multiple materials. In general, the main objective of FEM meshing is to

construct a nicely-shaped elements which can represent both geometry and material of the real-

world models for accurate and robust simulation. However, due to its linear representations

in general, it cannot accurately represent the geometric and physical properties of real-world

objects. For simulation-based assessment of real-world objects, e.g., the brain, these FEM

representations are not able to obtain an accurate and objective analysis result [107].

Biomechanic simulation of brain behaviors such as brain shifting and brain injury gains

ever-increasing importance in recent years while these behaviors remain an unclear problem

for public health professionals. Although impeded by that fact that brain material proper-

ties can not be retrieved directly from the human brain in vivo, there is a certain number of

research which have been done either using animal brains or modifying brain biomechanic

parameters to approach the real situation. Margulieset al. studied the relationship between

non-preconditioned and preconditioned biomechanic response of brain tissue from porcine

[18]. Later they further investigated the homogeneity of gray matter by measuring stiffness

of cerebral cortex and comparing it to the thalamus of porcine brain [10]. Many investigations

have been conducted using mathematical finite element modeling [75, 31, 107]. In general, the

cerebral tissues in their models were represented by homogeneous materials. Recent studies

started to make distinctions between gray and while matters. In terms of applications, brain
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deformation simulation facilitates researchers and clinicians new prospects in clinical practice

[39].

5.2 Spherical Multivariate Simplex Spline Volume
Generally, volumetric simplex spline can take as input any domain with arbitrary geometry

and topology due to its non-tensor-product nature. Spherical simplex spline volume is defined

by volumetric simplex splines over a spherical volumetric domain. Here, we choose the sphere

domain since mapping most organic objects in the biomedical research field to a sphere results

in less distortion and more uniform distribution of sampling points, which reduces the diffi-

culty in the fitting procedure. Note that, our volumetric simplex spline volumes represent not

only boundary geometry, but also interior geometry. They can represent physical or material

attributes over the entire solid as well.

Generally, volumetric simplex spline can take as input any domain with arbitrary geometry

and topology due to its non-tensor-product nature. Spherical simplex spline volume is defined

by volumetric simplex splines over a spherical volumetric domain. Here, we choose the sphere

domain since mapping most organic objects in the biomedical research field to a sphere results

in less distortion and more uniform distribution of sampling points, which reduces the diffi-

culty in the fitting procedure. Note that, our volumetric simplex spline volumes represent not

only boundary geometry, but also interior geometry. They can represent physical or material

attributes over the entire solid as well.

5.2.1 Spherical Volumetric Simplex Splines

Now let S3 = {x ∈ R3, ‖x‖ ≤ c} denote a solid sphere inR3. Without loss of generality,

let S3 be a unit solid sphere, i.e.,c = 1. Let T be an arbitrary “proper” tetrahedralization of

S3. Here, “proper” means that every pair of domain tetrahedra are disjoint, or share exactly one

vertex, one edge, or one face. To each vertext of the tetrahedralizationT, we assign a knot

cloud, which is a sequence of points[t0, t1, · · · , tn], wheret0 ≡ t. We callt primary-knot

and[t1, · · · , tn] sub-knots.Figure 3.1-(a)shows 4 vertices with cubic knot clouds associated,
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which are labeled asp,q, r, or s group, respectively. The primary-knots are rendered with

yellow dots and sub-knots with blue dots. We will use these two colors to differentiate the

primary-knots and sub-knots in the rest illustrations.

For every tetrahedronI = (p,q, r, s) ∈ T, in addition to the the requirements specified in

Chapter 3.3.2, we particular require

• if I is a boundary tetrahedron, the sub-knots assigned to the boundary vertices must lie

outside ofS3, i.e, all the sub-knots should be distributed outside of the unit solid sphere.

Figure 5.2-(a)illustrates a spherical volumetric simplex spline and its domain with its cubic

knot clouds associated. As observed in the figure, the sub-knots assigned to the boundary

vertices of the sphere domain are positioned outside of the sphere.Figure 5.2-(b)shows the

control space and the evaluated spherical volumetric simplex volume.

(a) (b)

Figure 5.2: (a) The spherical domain with assigned knot clouds for defining spherical volu-
metric simplex splines. The yellow and blue dots denote primary-knots and sub-knots, respec-
tively; (b) The spherical simplex spline volume defined upon the domain in (a). The green dots
denote the control points. The evaluated spherical volume simplex volume is scaled to show
its nonempty interior property.
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5.2.2 Initial Construction of Spherical Volumetric Domain

Theoretically, domain tetrahedralization,T, can be an arbitrary tetrahedralization of a unit

solid sphere,S3, as aforementioned inChapter 5.2.1. However, in practice, two important

aspects of the domain tetrahedralization should be carefully considered:

• T should be as uniform as possible, i.e., minimizemax(V olI∈T)
min(V olI′∈T)

. Uniform tetrahedral-

ization at the same hierarchical level will decrease the recursion time while hierarchical

structure is needed.

• T should avoid bad-shaped tetrahedra in Delaunay tetrahedralization. Bad-shaped tetra-

hedra, for instance, slivers, will increase numerical error during the evaluation.

Constrained Delaunay tetrahedralization [15] can observe the second requirement, but it will

introduce very large and very small tetrahedra thus can not comply with the first requirement.

Instead, we tetrahedralize a regular icosahedron and then make use of harmonic volumetric

mapping to map the tetrahedralization to a solid sphere. As a result, the solid sphere tetrahe-

dralization is uniform and its quality is better than what constrained Delaunay tetrahedraliza-

tion can offer.

Figure 5.3shows the flow of domain establishment and the knots distribution. Note that,

in Figure 5.3-(d), the sub-knots associated with boundary vertices are placed outside of the

sphere. The uniform tetrahedralization may be subdivided and refined when necessary, e.g.,

modeling discontinuity as described later.

5.2.3 Volumetric Parameterization

To find a volumetric parameterization of a genus-zero solid, harmonic volumetric mapping

facilitates a viable solution. Harmonic volumetric mapping was first implemented for applica-

tions by Wanget al. [102, 103]. They successfully exposed its merits by applying the approach

to brain mapping which can be considered as a genus-zero volume. Recently Liet al. [36] fur-

ther extended the scheme to high-genus harmonic volumetric mapping and employed it in solid
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(a) (b) (c)

(d) (e)

Figure 5.3: (a) A regular icosahedron, which is the best approximation of a solid sphere among
all regular polyhedra; (b) Tetrahedralization of (a) is uniform and it is easy to implement; (c)
Harmonic mapping from (b) to a unit solid sphere yields the domain tetrahedralization, con-
sisting of uniform and well-shaped tetrahedra; (d) A domain with cubic knot clouds assigned
to (c); (e) A close view of the domain picked from (d).

modeling applications. Harmonic volumetric mapping can be formulated as follows:

Given two solid objectsM1 andM2, and their boundary surfaces∂M1 and∂M2. Suppose

that ~f ′ is the conformal mapping [22, 101] between∂M1 and∂M2, which is pre-computed.

The harmonic volumetric mapping~f : M1 7−→ M2 satisfies:

 ∇2 ~f(v) = 0, v ∈ M1 \ ∂M1,

~f(v) = ~f ′(v), v ∈ ∂M1,
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where the∇2 is the Laplacian operator defined continuously in 3D as

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

and∇2 ~f = 0 for ~f = (f0, f1, f2) is equivalent to∇2fi = 0 for all i = 0, 1, 2.

The harmonic volumetric mappingf here minimizes a harmonic energyE(f) [103], which

is defined as

E(f) =
∑
(u,v)

k(u, v)(f(u)− f(v))2, (5.1)

wherek(u, v) is the string constant defined in edge betweenu andv. Here,f can be solved

using steepest descent algorithm.

The algorithmic procedure of harmonic volumetric mapping is concisely summarized as

follows:

1. For each boundary vertex,v, v ∈ ∂M1, let ~f(v) = ~f ′(v); for each interior vertex,v,

v ∈ M1 \ ∂M1, let ~f(v) = ~0, compute the harmonic energyE0 usingEquation 5.1.

2. For each interior vertex,v, v ∈ M1 \ ∂M1, compute its derivativeD~f using steepest

descent algorithm, then update~f(v) by δ ~f(v) = −D~f(t)δt, δt is the step length.

3. Compute the harmonic energyE; if E −E0 is less than user specified thresholdδE, the

algorithm stops; Otherwise assignE to E0 and repeat step (2) through step (3).

Figure 5.4shows the harmonic volumetric mapping from one brain to a solid unit sphere.

After the mapping has been established, the point parameterization and correspondence be-

tween the domain and the object can now be stored as the input of our spherical simplex spline

model reconstruction algorithm.

5.2.4 Fitting with Spherical Volumetric Simplex Splines

After harmonic volumetric mapping, a finite number of discretized sampling points of the

physical object,(xi, yi, zi, ρi)
m
i=1, and their parametric coordinates in the domain,(ui, vi, wi)

m
i=1,
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can be retrieved.ρi denote a physical attribute. Note that, there could be multimodality physical

attributes with more dimensions. In this case, all we need to do is to increase the dimensions

and add the additional variables into the sampling. All the computation remains the same.

Without loss of generality, we only consider one type of attribute here in order to simplify the

mathematical notation. The sampling point pairs indicates the parameterization from the solid

sphere domain to the to-be-modeled object. Volumetric simplex spline is an ideal tool for fit-

ting the geometry as well as the physical properties of the volumetric object. In this section,

we will describe how to fit spherical volumetric simplex splines to the real-world model.

The problem of model reconstruction in our system can be stated as follows: given a set

P = {pi}m
i=1 of points,pi = (xi, yi, zi, ρi) ∈ R4, andG = {gi}m

i=1, gi = (xi, yi, zi) ∈ R3

denoting the pure geometry extracted from the sampling points, find a volumetric simplex

splines volumes : R3 → R3 that approximatesG.

Since we are interested in reconstructing the model with respect to its solid geometry, our

spherical simplex spline volumes are vector functions, i.e., the control pointscI
β ∈ R3 are

vectors. Unlike the existing fitting algorithms with simplex splines which usually find the

parametric domain which is close to the original geometry of the to-be-fitted dataset [25, 26],

we use the position(ui, vi, wi) within the solid sphere as the data pointgi’s parametric value.

Therefore, we need to minimize the following objective function:

min Edist(s) =
m∑

i=1

(gi − s(ui, vi, wi))
2. (5.2)

Equation 5.2is a typical least squares problem. If the control points are treated as free

variables, it falls into a very special category of nonlinear programming, i.e., unconstrained

convex quadratic programming, which has the following form:

Edist =
1

2
xT Qx + cTx + f,
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wherex = (. . . , cI
β, . . . )T ,

Q =


...

. . . 2
∑m

i=1 N I
β(ui, vi, wi)N

I
′

β′ (ui, vi, wi) . . .

...

 ,

c = (. . . ,−2
m∑

i=1

giN
I
β(ui, vi, wi), . . . )

T ,

andf =
∑m

i=1 g2
i . Note that,Q is a positive definite, symmetric and sparse matrix. Interior-

point method can solve this problem very efficiently.

After reconstruction procedure, we can achieve an integrated representation incorporating

the object’s solid geometry,s, and its material attribute,d, at the same time. The scheme can

be expressed as

 s

d

 (u) =
∑
I∈T

∑
|β|=n

 c

dc

N(u|V I
β ), (5.3)

wherec anddc are the control points and control coefficients for solid geometry and material

attributes, respectively.

To model discontinuity in attribute field, we first detect where the discontinuity occurs,

then decompose the original domain into two separated new domains with shared vertices and

edges as the 2D illustration inFigure 5.5. This simple mechanism maintains the consistent

structure of the domains. The evaluation, hierarchy structure, and data structure all remain the

same. Therefore, we can perform the same evaluation on these two domains simultaneously

as if the evaluation is performed on a single domain. With the association of different control

coefficients, the functional evaluation can output a discontinuity in material field corresponding

to the shared edges. This change will not affect the geometry of the DSVSS volume as long as

the associated control points remain the same.
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5.3 Dynamic Spherical Multivariate Simplex Splines
In this section, we formulate our dynamic spherical volumetric simplex splines. We inte-

grate mass, dissipation, and deformation energy into static simplex spline models, and employ

Lagrangian dynamics to derive their equations of motion. Consequently, the static control

points of the geometric model become generalized time-varying physical coordinates in the

dynamic model.

5.3.1 Geometry and Kinematics of Simplex Spline Volumes

The dynamic simplex splines further extend the geometric simplex splines by incorporating

time into the volume representation. Now the function of representation bears both parametric

variableu and timet as follows:

s(u, t) =
∑
I∈T

∑
|β|=n

cI
β(t)N I

β(u). (5.4)

For simplicity of formulation expression, we define the vector of generalized coordinates

of control pointscI
β as:

c = [· · · , cI
β

>
, · · · ]

>
, (5.5)

where> denotes transposition. We then expressEquation 5.4ass(u, c) in order to emphasize

its dependence onc whose components are functions of time. Hence, the velocity of the

dynamic simplex splines is:

ṡ(u, t) = Jċ, (5.6)

where the overstruck dot denotes a time derivative and Jacobian matrixJ(u) is the concate-

nation of the vectors∂s/∂cI
β. Assumingm tetrahedral in the parametric domain,β traverses

k = (n + 1)(n + 2)(n + 3)/6 possible tetrads whose components sum ton. Becauses is a

4-vector andc is anM = 4mk dimensional vector,J is a4×M matrix, which is expressed as
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J =


· · · ,



N I
β 0 0 0

0 N I
β 0 0

0 0 N I
β 0

0 0 0 N I
β


, · · ·


, (5.7)

whereN I
β(u) = ∂sx

∂cI
βx

= ∂sy

∂cI
βy

= ∂sz

∂cI
βz

= ∂sd

∂cI
βd

.

The subscriptsx, y, z andd denote derivatives of the components of the 4-vector: Cartesian

coordinates and physical property, respectively. Apparently, the solid volume can be presented

as the production of the product of the Jacobian matrix and the generalized coordinate vector,

s(u, c) = Jc. (5.8)

5.3.2 Lagrange Equations of Motion

Lagrange dynamics are widely used in physics-based shape design. In this section, we

derive the equations of motion of dynamic simplex splines by applying Lagrangian dynamics

[20]. We express the kinetic energy due to the prescribed mass distribution functionµ(u, v, w),

and a Raleigh dissipation energy due to a damping density functionγ(u, v, w). Both energy

functions are defined over the parametric domain of the volume. The mass distribution function

and damping density function are reconstructed with spherical volumetric simplex splines as

well, as described inChapter 5.2.4. 3D thin-plate-like energy under tension energy model

[4, 24, 104, 90] is employed here in order to define an elastic potential energy,

U =
1

2

∫∫∫
(α1,1s

2
u + α2,2s

2
v + α3,3s

2
w+

β1,1s
2
uu + β1,2s

2
uv + β1,3s

2
uw + β2,2s

2
vv+

β2,3s
2
vw + β3,3s

2
ww)dudvdw. (5.9)
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The subscripts ons denote the parametric partial derivatives. Theαi,j(u, v, w) andβi,j(u, v, w)

are elasticity functions which control tension and rigidity, respectively. Other energies, requir-

ing greater computational cost, are also applicable, for instance, the non-quadratic, curvature-

based energies in [92, 48]. Applying the Lagrangian formulation, we obtain the second-order

equations of motion

Mc̈ + Dċ + Kc = fc, (5.10)

where the mass matrix is

M =

∫∫∫
µJ>Jdudvdw, (5.11)

the damping matrix is

D =

∫∫∫
γJ>Jdudvdw, (5.12)

and the stiffness matrix is

K =

∫∫∫
(α1,1J

>
u Ju + α2,2J

>
v Jv + α3,3J

>
wJw+

β1,1J
>
uuJuu + β1,2J

>
uvJuv + β1,3J

>
uwJuw+

β2,2J
>
vvJvv + β2,3J

>
vwJvw + β3,3J

>
wwJww)dudvdw. (5.13)

M, D andK are allM×M matrices.fc is the generalized force, which is obtained through

the principle of virtual work [20] done by the applied force distributionf(u, v, w, t). fc can be

computed as follows:

fc =

∫∫∫
J>f(u, v, w, t)dudvdw. (5.14)

5.4 Finite Element Framework
The evolution of the vector of generalized coordinates,c(t), is determined by the second-

order nonlinear differential equation.Equation 5.10with physical parameter dependent matri-
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ces, does not have an analytical solution. Instead, we obtain an efficient numerical implemen-

tation using finite-element techniques.

Standard finite element methods explicitly integrate the individual element matrices into

the global matrices that appear in the discrete equations of motion [32]. Although applicable in

some environments, it is infeasible in our infrastructure because of its unacceptably high com-

putational cost. Instead, we pursue an iterative matrix solver to avoid the cost of assembling

the global matricesM, D, andK, working instead with the individual dynamic simplex spline

element matrices. We construct finite element data structures, similar to [64], which facilitates

the parallel computation of element matrices.

5.4.1 Data Structures for Dynamic Simplex Spline Finite Elements

We define an element data structure which contains the geometric specification of the

tetrahedron patch element along with its physical properties. In each element, we allocate

an elemental mass, damping, and stiffness matrix, and include the quantities such as the mass

µ(u, v, w), dampingγ(u, v, w), and elasticityαi,j(u, v, w) andβi,j(u, v, w) functions. A com-

plete dynamic simplex spline consists of an ordered array of elements with additional informa-

tion. The element structure includes pointers to appropriate components of the global vectorc.

Neighboring tetrahedra will share some generalized coordinates.

The physical parameters, such as massµ(u, v, w), dampingγ(u, v, w), and elasticity,

αi,j(u, v, w) andβi,j(u, v, w), need to be measured and computed before the calculation of

element matrices. In this section, as the goal of the applications is to simulate the biomechani-

cal behavior of the brain, we directly adoptµ andγ from the brain study conducted by Zhang

et al. [106]. According to the relationship of elastic moduli of elastic isotropic materials [95],

α andβ can be computed from Bulk modulus and Poisson’s ratio as follows:

α = 3B(1− 2υ), (5.15)
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β =
3B(1− 2υ)

(2 + 2υ)
, (5.16)

whereB is the Bulk modulus andυ is the Poisson’s ratio of brain tissues. After we get the

physical parameters for different types of brain tissues, we then take these coefficients into the

fitting procedure to integrate them into our DSVSS framework. Now the volume representation

can be described as follows:



s

µ

γ

α

β


(u) =

∑
I∈T

∑
|β|=n



c

µc

γc

αc

βc


N(u|V I

β ), (5.17)

wherec andµc, γc, αc, βc are the control points and control coefficients for solid geometry

and material physical attributes, respectively. Homogeneously taking the parameters into the

element without fitting may sound feasible. However, it is the fitting procedure that takes

attribute field discontinuity into account to achieve a model of high fidelity.

5.4.2 Calculation of Element Matrices

We employ Gaussian quadrature [62] to numerically evaluate the integral expressions for

the mass, damping, and stiffness matrices associated with each element. In this section, we ex-

plain the expression of the element damping matrix in detail; the expressions of mass and stiff-

ness matrix will follow suit. Assuming the parametric domain of the element isI(v0, v1, v2, v3)

wherevi denotes the vertex, the expression for entrydij of the damping matrix takes the integral

form

dij =

∫
I∈T

∫
I(v0,v1,v2,v3)

γ(u, v, w)fij(u, v, w)dudvdw, (5.18)



www.manaraa.com

84

wherefij is evaluated using the recursive expression inEquation 4.1. Given integersNg, we

can find the corresponding Gauss weightsag, and parametric abscissasug, vg, andwg such that

dij can be approximated by

dij ≈
Ng∑
g=1

agγ(ug, vg, wg)fij(ug, vg, wg). (5.19)

In our system, we chooseNg to be 10 for cubic dynamic simplex splines. Because of the ir-

regularity of the knot distribution, many of thefij vanish over the sub-space ofI(v0, v1, v2, v3).

We can further subdivide theI(v0, v1, v2, v3) to minimize the numerical error.

5.4.3 Discrete Dynamics Equations

In this section, we will derive the discrete dynamics equations based onEquation 5.10. In

order to integrate it in a simulation system, e.g., tissue simulation during surgery, it is important

to provide users with visual feedback about the evolution state of the DSVSS model. Rather

than using computation-intensive time integration methods which may traverse the largest pos-

sible time steps, it is more crucial to provide a smoothly simulated display by maintaining the

continuity of the dynamics form one step to the next. Therefore, it is much desirable to employ

less costly yet stable time integration methods that take reasonable time steps.

The state of the dynamic simplex splines at timet + ∆t is integrated using prior states at

t and t − ∆t. To maintain the stability of the integration scheme, especially for high stiff-

ness configurations with large elasticity functions, we use an implicit time integration method,

which employs discrete derivatives ofc using backward differences. The velocity expression

is

ċt+∆t ≈ (c(t+∆t) − c(t−∆t))/2∆t, (5.20)

and the acceleration expression is
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c̈t+∆t ≈ (c(t+∆t) − 2c(t) + c(t−∆t))/∆t2. (5.21)

Then the time integration formula can be expressed as

(2M + ∆tD + 2∆t2K)c(t+∆t)) =

2∆t2fc + 4Mc(t) − (2M−∆tD)c(t−∆t), (5.22)

where the superscripts denote evaluation of the quantities at the indicated times. The matrices

and forces are evaluated at timet. Our extensive experiments have shown that this discretiza-

tion scheme produces satisfactory results. Instability due to large transient applied forces can

be reduced by shortening the time integration step adaptively.

The equations of motion allow physically realistic simulation of real-world models with

complex dynamics. However, it is possible to make simplifications to the equations of motion

to further reduce the computational cost of solvingEquation 5.22when we simulate some more

complicated volumes which bears more tetrahedra in its domain. In certain solid modeling and

simulation applications where the inertial terms are not taken into count, theEquation 5.10

can be simplified by setting the mass density function to zero. Without computation of the

acceleration terms or storage of mass matrices, the algorithm is more efficient. With zero mass

density,Equation 5.10simplifies to

Dċ + Kc = fc. (5.23)

Discretizing the corresponding derivatives ofc in Equation 5.23with backward differences,

the integration formula becomes

(D + ∆tK)c(t+∆t) = ∆tfc + Dc(t). (5.24)
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5.5 Brain Simulation Using DSMSS Volume
With the reconstruction of brain model from both MRI data and material map using our

spherical volumetric simplex splines, we can obtain an analytic representation simultaneously

describing both geometric and physical properties of the brain. Thus, brain simulations, such as

brain shifting, deformation, and brain injury predication, can be achieved via the simulation-

based analysis. In this section, we present the accurate brain reconstruction and simulation

using our unified scheme, DSVSS volume. The reconstruction process is fully automated, and

for brain simulation, the user only needs to initialize a few environmental parameters, e.g., the

gravity and the resected skull in brain shifting simulation.

5.5.1 Fitting Spherical Volumetric Simplex Splines to Brain Data

Taking a set of high-resolution brain SPGR MR scans, we first strip away the skull and only

retain the brain volume as shown inFigure 5.6-(a). With the initial tetrahedralization of the

brain model and harmonic volumetric mapping, we can obtain the parameterization of the data

points of the brain tetrahedralization as described inChapter 5.2.3, i.e., the parameterization

describes the correspondence between the brain data points and parametric coordinates in the

sphere domain. Fitting spherical volumetric simplex splines to the geometric representation,

we can reconstruct the geometry of the brain nicely as shown inFigure 5.4. To model the

intensities (for visualization purpose) and material distribution (for simulation purpose), we

can start with the same spherical tetrahedral domain, and then subdivide and refine the domain

[87], when necessary, to model more sophisticated material variations or discontinuities as

described inChapter 5.2.4. Note that, the intensities and material of brain structures are related

since the imaging procedure can be considered as a function mapping of the material maps to

scanned images. So the required domain for intensities and material distributions are very

similar. Figure 5.6shows the reconstruction result with different rendering techniques and
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Equation 5.25shows the reconstructed representation,


s

d

I

 (u) =
∑
I∈T

∑
|β|=n


c

dc

Ic

N(u|V I
β ), (5.25)

wheresdenotes the solid geometry of the brain,d denotes the reconstructed physical attributes

of the brain, andI denotes the reconstructed image intensities from the high-resolution SPGR

MRI sequence.c, dc and Ic are the control points and control coefficients. The accuracy

of the data fitting is documented in the experimental result section. After obtaining high-

quality DSVSS volume representation of the brain model, we can use it to simulate brain

deformation during surgery for computer-assisted surgical planning/surgery, or even for an

innovative simulation-based diagnosis for brain injury under blunt impact.

5.5.2 Brain Shifting during Surgery

As known by brain surgery professionals, after a patient’s skull is open, the brain will

behave increasing deformation, known as brain shifting, during ongoing surgical procedures,

predominantly due to the gravity and the drainage of cerebrospinal fluid. This will inevitably

lead to the repositioning of the surgical targets embedded in brain. As a compensation to

increase the spatial accuracy of modern neuronavigation systems, intraoperative magnetic res-

onance imaging (IMRI) is widely used for quantitative analysis and visualization of this phe-

nomenon [50]. Nevertheless, despite its virtually real-time aspects, IMRI only provides very

low-resolution intraoperative MR image which can never substitute the high-resolution pre-

operative SPGR MR image used to determine with high accuracy key dimensions of the brain

and the locations of the surgical targets embedded in the brain. We employ our dynamic spher-

ical volumetric simplex splines model into the brain simulation to compute the brain shifting.

In our framework, brain shifting can be simulated by applying constant gravity force~G to

the brain. The material properties that we used in our experiments were obtained fromthe bio-
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mechanics groupat Wayne State University (WSU). After setting up the physical parameters

of an individual brain, we also need to take the nature boundary of the brain, the skull, into

consideration. The fact is that no matter what manner the brain behaves deformation, it lies

inside the skull, i.e., its nature boundary will not exceed the skull. Therefore, spatial geometric

constraints need to be enforced. We add the soft constraints with forces. When there is shift-

ing outside the boundary, we insert corresponding forces along the opposite direction of the

movement to the simulation procedure.

Figure 5.7illustrates the brain shifting simulation using our framework when taking out the

resected skull over the right temporal lobe. The green contour shows the deformation clearly.

Our shifting simulation results highly agree with the fact captured by IMRI. The experiments

show that it is effective to use our model to recover motion and deformation from image data.

Based on 20 simulation experiments, quantitative comparison between the IMRI volumes and

our simulated brain volumes by co-registration shows that our system can achieve an excellent

accuracy of92.2%. The accuracy of a single simulation, denoted byA, is calculated as the

normalized sum of squared differences between the two volumes,

A = 1−
∑

a ‖S −R‖2∑
a ‖R‖2

, (5.26)

whereS is the volume obtained from our shifting simulation results andR is the registered

IMRI volume. To make the comparison substantial and intra-sequence, we first register MRI

volume to IMRI volume. Figure 5.8depicts another brain shifting simulation. The skull is

resected over the left temporal lobe. The color map is blended into the figure to better visualize

the deformation scale. Note that, when surgical tools are operating in the brain, there will be

larger shifting and deformation.

As demonstrated from the available comparison and evaluation, our framework can accu-

rately simulate the deformation of the brain (e.g.,s(t)) and simultaneously present high-quality

and high-resolution visualization using the transformed SPGR image intensities,I , modeled in
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the reconstructed simplex spline volume (seeEquation 5.25). It is very promising to use the

framework in both surgical planning (e.g., predicting the shifting of the targets) and computer-

assisted surgery (e.g., repositioning the targets with high-resolution display,I , automatically

computed based on the realistic deformation of the reconstructed brain,s(t)).

5.5.3 Brain Injury Prediction

Here, we refer the brain injury prediction as a procedure of finding out the extent and

location of the injury in the brain during a blunt impact. The injury frequently occurs to auto-

mobiles drivers during the collision and sports players during the acute sports activities such

as football. Current brain surgeons and professionals rely indispensably on those modern neu-

roimaging and neuronavigation systems to pinpoint the injury. Clinically, the identification

of the site and extend of injury within the brain without subjecting the patient to an imaging

scanning, has its advantages. For instance, head injured patients are difficult to control and

may not remain still long enough for the completion of the scanning. In some severe cases,

time is so limited that patients even can not afford such a pre-operative scanning. Thus the

demand of simulation-based Computer Aided Diagnosis (CAD) solution goes up to high gear.

Oftentimes, the solution is referred as “brain injury modeling”.

One critical issue about BIM technique is to derive a patient-specific brain model based on

a template model, thus skipping neuroimaging and neuronavigation, and saving computational

time as well as pre-operation time. One widely employed way is to modify the exterior sur-

face of each substructure from a general brain model followed by re-generation of the mesh.

Ferrantet al. [17] and Migaet al. [47] developed their approaches respectively using this

approach by meshing the entire brain without considering anatomical structures and material

difference. Obviously, this approach is not accurate since the brain geometry, structures, and

heterogeneous material variations are not considered. We employ our dynamic spherical sim-

plex splines-based simulation framework to handle the situation. As for developing a patient-

specific model, our method can quickly modify the control points/coefficients according to the
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data fitting of the available data or information of the patient.

In our framework, we compute the stress field of the human brain under blunt impact using

our DSVSS volume. Because the human brain has highly heterogenous physical properties

in different areas of the brain, such as the white matters, the gray matters, the cerebellum,

the brainstem, the lateral ventricles, the third ventricles, the bridge veins, and so on. From

this perspective, brain structures under direct impact are not necessary the parts where brain

injuries occur. With our unified solid representation through dynamic spherical volumetric

simplex splines, blunt-impact injury can be simulated using our framework by applying an in-

stantaneous impact to the brain model under given approximate impact conditions. The model

incorporated in our framework can not only assist the physician in identifying the location

and extend of damaged area without pre-operative scanning but also enable the designer of

automobiles and helmets to improve the human-centered design of head-protective facilities.

Figure 5.9demonstrates a brain injury prediction with a blunt impact on the frontal lobe.

Time interval here is 3ms. Note that, we assume that the brain always lies inside the skull

during the simulation. As in brain shifting simulation, we add corresponding contacting forces

into the simulation when the brain is shifting outside the boundary. The corresponding con-

tacting forces is along the opposite direction and linear to the extent of the brain movement.

Figure 5.9-(b-j)shows the stress fields of the brain in each time step. Redder area indicates

higher stress, which is a sign for a higher possibility of injury and bleeding. In the figure,

the thalamus is under bigger stress as well beside the place under direct blunt impact. The

result complies with the ground truth captured from the real biomechanic experiments on a

human corpus model. Quantitative evaluation of our simulation result is obtained through the

comparison with the ground truth.

Figure 5.10shows two stress evolution curves of one landmark inside right thalamus under

the specified blunt impact inFigure 5.9. The green one is the ground truth obtained from the

real biomechanic experiments and the red one is the result simulated using our framework. The
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result curves demonstrated that our simulation can obtain an accurate and satisfactory result,

which has great potential for computer-aided diagnosis of brain injury under blunt impact.

Figure 5.11illustrates another experiment regarding brain injury prediction. A different

patient is undergoing a similar blunt impact on the left frontal lobe. The simulation shows that

besides the spot under direct impact, the thalamus is another area where bleeding may happen,

which also coincides with the ground truth fact.

5.6 Experimental Results
We have implemented a prototype system on a Dell Precision Workstation T7400, which

has dual Xeon CPUs with Quad Cores and 4GB RAM. The system is written in VC++ and VTK

4.2. We perform experiments on several brain datasets. In order to compare the reconstruction

qualities for patient-specific cases, we uniformly sample the brain geometric and physical fields

into a unit cube.

Table 5.1shows the configuration of DSMSS volumes reconstructed from different datasets.

The performance statistics of our fitting algorithm is also included. From the table, one can

observe that, compared with discrete mesh representation, our spherical multivariate simplex

spline based representations have low storage requirements and can achieve high accuracy,

e.g., fitting r.m.s. error≤ ×10−4. High computational cost is the challenging aspect of our

algorithm. However, in practice, by applying multiresolution and multi-thread implementation

of the geometric elements, the time cost can be greatly reduced.

Subject Degree Data Points Tetrahedra Control Points Knots Fitting Error

A 2 60298 2500 3871 1683 3.0375×10−4

B 3 72357 2500 12431 2244 2.1483×10−4

C 2 79593 4320 6525 2769 1.9743×10−4

D 3 86226 4320 21117 3682 1.5290×10−4

Table 5.1: Statistics of 3D reconstruction of brain models. The fitting error is presented by
root-mean-square error.

Table 5.2shows the performance of DSMSS framework applied to brain datasets. Both
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brain biomechanic behaviors, brain shifting and brain injury, are simulated. Note that all the

units in this table are metric. In the table, only the physical properties of white matter are listed.

For the physical properties of different type of brain tissues, readers are referred to [106]. The

averaged, overall computational time for the entire simulations demonstrated inFigure 5.8

(brain shifting) andFigure 5.9or Figure 5.11(brain injury simulation) are listed in the table.

Faster overall computations can be achieved by increasing the simulation time interval. The

simulation results on brain shifting and brain injury prediction have been already illustrated

in Chapter 5.5. Overall, our brain simulation results exhibit a reliable approximation of how

brain behaves shifting and how brain could be injured in the real world when inputting the real

material parameters.

Application µ γ α β ∆t Time
(kg/m3) (1/s) (GPa) (GPa) (ms) (hh : mm : ss)

Shifting Simulation 1.04×10−6 400 0.6570 0.2266 75 00:24:20
Impact Simulation 1.04×10−6 400 0.6570 0.2266 3 00:22:33

Table 5.2: Physical parameters and statistics of brain biomechanic simulations.

5.7 Comparison with Existing Methods
In this section, we will briefly compare our object simulation paradigm with other object

simulation schemes. As there are quite a lot literature on this research topic, I only choose

several of them as the representative ones.

Authors Volume Representation High-genus Support

Welch and Witkin [104] B-Spline Based Free-Form Deformation Trimming and Patching
Terzopoulos and Qin [93] Dynamic NURBS Trimming and Patching
Qin and Terzopoulus [64] Dynamic Triangular B-Spline Naturally Supportive
Our Method Dynamic Multivariate Simplex Spline Naturally Supportive

Table 5.3: Comparison of object simulation schemes.

As we may see from the table, B-spline and its variances are widely employed as the un-
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derlying volume representation schemes. However, its natural deficiency, the tensor product

nature, greatly hinders its application. Dynamic bivariate simplex spline is ideal for surface

simulation but incompetent for 3D object simulation. Our unrival physically based model-

ing and simulation scheme is based on multivariate simplex spline which is a true non-tensor

product method with the best accuracy and high-genus support.

5.8 Summary
In this chapter, we have developed a novel simulation framework based on dynamic spher-

ical multivariate simplex splines. We have introduced an automatic and accurate algorithm to

fit the digital models of real-world objects with a single spherical multivariate simplex spline

which can represent with accuracy geometric and material properties of objects simultaneously.

With the integration of the Lagrangian mechanics, the dynamic multivariate simplex spline rep-

resenting the real-world object can accurately simulate its physical behavior. We have applied

the framework in the biomechanics simulation of the brain, such as brain shifting during the

surgery and brain injury under sudden impact. We have compared the simulated results with

the ground truth obtained through interactive magnetic resonance imaging and the ground truth

from real biomechanic experiments. The experimental results have demonstrated the excellent

performance of our technique, which can be effectively used in deformation-based brain simu-

lation and simulation-based diagnosis/assessment. The robustness and accuracy result from the

tight integration of the geometric and material properties into the simulation. In the near future,

we will investigate more powerful simulation schemes based on our novel digital representa-

tions. Hierarchical simulation will also be explored to speed up the simulation for real-time

applications. On the application side, we will develop a DSMSS model of an entire head,

which allows us to simulate more sophisticated behaviors of the brain.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: (a) The discretized point set in the spherical domain space; (b) The discretized data
point set in the physical space, from the same angle of view as (a); (c-f) The shapes are cut
into halves sagittally (c-d) and axially (e-f) in order to show the interior mapping between the
parametric domain and the physical object.
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Figure 5.5: Modeling discontinuities with separated domain triangles. Even though A and A’
are co-located, and B and B’ are co-located, the domain triangles in red and green are belonged
to two different domains.

(a) (b) (c)

Figure 5.6: (a) An axial view of a slice high-resolution brain SPGR MRI dataset; (b) Volume
visualization of the reconstructed DSVSS volume; (c) The volume is split to show its recon-
structed interior intensities.
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(a) (b) (c)

Figure 5.7: (a) One slice view of IMRI image; (b) The reconstructed DSVSS volume, where
the cross-sectional view displays the DSVSS-captured image intensities reconstructed from
the pre-operative high-resolution SPGR images; (c) The brain deformation simulated using
our system, where the cross-sectional view is captured, from the same view angle as (b), to
show the displacement from (b), and the green contour indicates the extent of displacement at
the boundary. In (b) and (c) the red arrow denotes the orientation of gravity, and its position
denotes the resected skull.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.8: (a) The color map used to describe the deformation scale. The red arrow on the
ISO-surface indicates the position where skull is resected; (b-h) Brain shifting simulation with
a time interval of 75ms; (i-j) To better visualize the deformation, cross-section views of the first
key frame (b) and last one (h) are retrieved. Deformed junction between the two hemispheres
indicates the global brain shifting.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.9: (a) The color map used to describe the stress field. The red arrow on the ISO-
surface indicates the position where a blunt impact occurs; (b-j) Brain injury simulation with a
time interval of 3ms. The blunt impact occurs at the front lobe. Simulation results indicate that
in addition to the spot directly under the impact, there are some other positions where bleeding
may happen.

Figure 5.10: Comparison of stress evolutions of the right thalamus under a blunt impact. The
green one is the simulation curve obtained from the real biomechanic experiments and the red
one is the result simulated using our framework.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 5.11: (a-f) Another brain injury simulation with a time interval of 3ms. The blunt impact
occurs at the left front lobe; (g) Comparison of stress evolutions of the right thalamus under
the blunt impact.
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CHAPTER 6:
CONCLUSION

The purpose of this chapter is twofold. We first summarize the contributions made by this

dissertation, then we point towards the future work.

6.1 Contributions
In this dissertation, we are dedicated to present a general volume representation and model-

ing framework which employs dynamic multivariate simplex splines as its mathematic founda-

tion. We have made contributions in different volume-related research topics, such as volume

reconstruction, nonrigid volume registration, and physically based modeling and simulation.

1. Volume Reconstruction from 2D Images with Multivariate Simplex Splines (Chapter 3).

This part developed a new integral approach for representing, modeling, and reconstruct-

ing volume data with a hierarchical multivariate simplex spline model. The model is de-

fined over a hierarchical and progressive tetrahedralization of arbitrary 3D domains. Our

framework supports both structured and unstructured data. The modeled volume can be

of complicated geometry and arbitrary topology. We have developed a new paradigm to

reconstruct non-discrete models from a sequence of 2D images. With the flexible hier-

archical structures, our method can adaptively refine the domain tetrahedralization and

introduce more degrees of freedom locally for better fitting results. The volumes can

then be re-modeled and re-edited by manipulating the control vectors and/or associated

knots of multivariate simplex splines easily. Our results demonstrate that multivariate

simplex spline is a powerful volume representation and modeling scheme with new and

unique advantages which can be applied to diverse research areas.

2. Nonrigid Volume Registration with Multivariate Simplex Spline Based Free-Form Defor-

mation (Chapter 4).This part presented a novel nonrigid volume registration paradigm

using multivariate simplex spline based free-form deformation. Although multivariate
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simplex has already been a powerful tool in both engineering and medical research realm,

it has never been applied to the intramodality nonrigid volume registration. Our approach

first embedded the floating volume into the control space associated with its multivariate

simplex spline. With the guidance of normalized mutual information between the float-

ing and the reference volume, a rigid affine transformation is applied to the control points

of the control space, to obtain an initial rigid alignment. After that, a local, nonrigid mul-

tivariate simplex spline based free-form deformation was applied to the floating volume.

We introduce normalized mutual information, volume preserving term and smoothness

term to achieve better registration result. The experimental results have demonstrated

that multivariate simplex spline volumes are ideal for deformation-based brain registra-

tion as well as other medical imaging registration.

3. Physically Based Modeling and Simulation with Dynamic Spherical Multivariate Sim-

plex Splines (Chapter 5).This part proposed a novel physically based modeling and sim-

ulation framework based on dynamic spherical multivariate simplex splines. We have

introduced an automatic and accurate algorithm to fit the digital models of real-world

objects with a single spherical multivariate simplex spline which can represent with ac-

curacy geometric and material properties of objects simultaneously. With the integration

of the Lagrangian mechanics, the dynamic multivariate simplex spline representing the

real-world object can accurately simulate its physical behavior. We have applied the

framework in the biomechanics simulation of the brain, such as brain shifting during

the surgery and brain injury under sudden impact. We have compared the simulated

results with the ground truth obtained through interactive magnetic resonance imaging

and the ground truth from real biomechanic experiments. The experimental results have

demonstrated the excellent performance of our technique, which can be effectively used

in deformation-based brain simulation and simulation-based diagnosis/assessment.
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These contributions are described in more detail and validated in the main body of the

dissertation. Please refer to the corresponding chapters for details.

6.2 Future Work
This dissertation work also opens several venues for future work, with the focus on volume

representation and modeling.

1. Large Scale Deformed Volume Registration Using Surface Constrained 3D Mean Value

Coordinates Interpolation.Most of the current volume registration methods can only

deal with volumes with small deformation. Volume registration with large scale defor-

mation has been a severely under-explored research area for long time. One case in point

is breast disease diagnosis. As the human breast is the most deformed organ while the

subject’s position is changed from supine to prone. The large scale deformation during

the surgery will fail due to model inadequacy. In stead, I plan to investigate a novel

volume registration method, where large scale deformation is presented between the vol-

umes, using surface constrained 3D mean value coordinates interpolation.

2. Hierarchical Simulation of Biomedical Behaviors of Human Organs.Human organs

are usually heterogenous models of complex geometry and arbitrary topology. Current

prevalent human organ simulation schemes often employ traditional linear and nonlin-

ear finite element methods which are computationally expensive. Visualization of the

organ models usually require other representation schemes. This inconvenience further

reduces the flexibility of the traditional methods and greatly limits other downstream ap-

plications. Instead, I plan to investigate a more powerful simulation schemes of human

organs using dynamic multivariate simplex spline based digital volume representation.

Multivariate simplex spline’s native non-tensor product property makes it ideal for mul-

tiresolution modeling of heterogenous human organ models of complicated geometry

and topology. To further reduce the computational cost, hierarchical simulation will be
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explored to speed up the simulation for real-time applications.

These new research areas may not follow explicitly from this dissertation, however, we

should take the new understanding of our proposed powerful volume representation and mod-

eling framework gained through this dissertation into account.
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APPENDIX

Publications

• Journals

[1] Y. Tan, J. Hua and H. Qin, “Physically Based Modeling and Simulation with Dynamic

Spherical Volumetric Simplex Splines”,Computer-Aided Design, 2009,

DOI:10.1016/J.CAD.2009.02.014.

[2] Y. Tan, J. Hua and M. Dong, “3D Reconstruction from 2D Images with Hierarchical

Continuous Simplices”,The Visual Computer, 2007, vol. 23, no. 9-11, pp. 905-914.

• Conferences

[3] Y. Tan, J. Hua and H. Qin, “Dynamic Spherical Volumetric Simplex Splines with

Applications in Biomedical Simulation”, inProc. of ACM Solid and Physical Modeling

Symposium, 2008, pp. 103-119. (Note: This article was invited as one of the best papers

to Computer-Aided Design.)

[4] Y. Tan, J. Hua and M. Dong, “3D Reconstruction from 2D Images with Hierarchical

Continuous Simplices”, inProc. of Computer Graphics International, 2007. (Note: This

article was invited as one of the best papers toThe Visual Computer.)

[5] Y. Tan, J. Hua and M. Dong, “Feature Curve-guided Volume Reconstruction from

2D Images”, inProc. of 2007 IEEE International Symposium on Biomedical Imaging:

From Nano to Macro, 2007, pp. 716-719.

[6] Y. Tan, J. Ren, W. Ren and J. Hua, “Correlation Analysis between 3D Histology

and microCT Imaging for Non-invasive Diagnosis of Osteolysis”, inThe Annual Joint

Molecular Imaging Conference, 2007, extended abstract.

[7] W. Ren, O. Muzik, T. Mongner, P. Chakraborty,Y. Tan, B. Wu and J. Hua, “Assessing
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Implant Wear-Induced Inflammation Using PET[11C] PK11195 Imaging in a Rat Model

of Knee Joint Replacement”, inThe 53rd Annual Meeting of the Orthopaedic Research

Society, 2007, extended abstract.

• Submitted Papers

[8] Y. Tan, R. Liao, A. Kamen, H. Sundar, M. Pfister and J. Hua, “Deformable 2D/3D

Registration for Abdominal Aortic Aneurysm Interventions”, submitted toThe 13th In-

ternational Conference on Medical Image Computing and Computer Assisted Interven-

tion, 2010.

[9] Y. Tan and J. Hua, “Nonrigid Volume Registration Using Multiresolution Volumetric

Simplex Spline Based Free-Form Deformation”, submitted toSPM 2010: ACM Solid

and Physical Modeling Symposium, 2010.

• Papers in Preparation

[10] Y. Tan, J. Hua and J. Ren, “A Unified Correlation Scheme between 3D Histology

and microCT Volume”, planned submission toIEEE Transactions on Medical Imaging,

2010.

[11] Y. Tan and J. Hua, “Registration of Volumetric Objects with Large Deformations

Using Surface Constrained 3D Mean Value Coordinates Interpolation”, planned submis-

sion toIEEE Transactions on Medical Imaging, 2010.
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Volume representation and modeling of heterogeneous objects acquired from real world are

very challenging research tasks and playing fundamental roles in many potential applications,

e.g., volume reconstruction, volume simulation and volume registration. In order to accurately

and efficiently represent and model the real-world objects, this dissertation proposes an inte-

grated computational framework based on dynamic multivariate simplex splines (DMSS) that

can greatly improve the accuracy and efficacy of modeling and simulation of heterogenous

objects. The framework can not only reconstruct with high accuracy geometric, material, and

other quantities associated with heterogeneous real-world models, but also simulate the com-

plicated dynamics precisely by tightly coupling these physical properties into simulation. The

integration of geometric modeling and material modeling is the key to the success of represen-

tation and modeling of real-world objects.

The proposed framework has been successfully applied to multiple research areas, such as

volume reconstruction and visualization, nonrigid volume registration, and physically based

modeling and simulation.



www.manaraa.com

119

AUTOBIOGRAPHICAL STATEMENT

YUNHAO TAN

Yunhao Tan is a Ph.D. candidate in the Department of Computer Science at Wayne State

University where he is a research assistant in the Graphics & Imaging Laboratory. He received

his B.E. degree from Beijing Information Technology Institute in 2001, then he worked for

Beijing Bear Technology Group as a software engineer till 2003. His research interests include

computer graphics, visualization, and medical imaging. He is a student member of IEEE.


	Wayne State University
	1-1-2010
	Dynamic Multivariate Simplex Splines For Volume Representation And Modeling
	Yunhao Tan
	Recommended Citation


	tmp.1285249684.pdf.Z4JVH

